Skip to main content
Log in

Crystal structures of mutant ribosomal proteins L1

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Nine mutant ribosomal proteins L1 from the bacterium Thermus thermophilus and archaeon Methanococcus jannaschii were obtained and their crystal structures were determined and analyzed. The structure of the S179C TthL1 mutant, determined earlier, was also analyzed. In half of the proteins studied, point mutations of the amino acid residues exposed on the protein surface essentially changed the spatial structure of the protein. This proves that a correct study of biological processes with the help of site-directed mutagenesis requires a preliminary determination or, at least, modeling of the structures of mutant proteins. A detailed comparison of the structures of the L1 mutants and the corresponding wild-type L1 proteins demonstrated that the side chain of a mutated amino acid residue tends to adopt a location similar to that of the side chain of the corresponding residue in the wild-type protein. This observation assists in modeling the structure of mutant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zimmermann R.A. 1980. Interactions among protein and RNA components of the ribosome. In: Ribosomes. Structure, Function and Genetics. Eds. Chambliss G., Craven G., Davies J., et al. Baltimore: University Park Press, pp. 135–169.

    Google Scholar 

  2. Gourse R.L., Sharrock R.A., Nomura M. 1986. Control of ribosome synthesis in Escherichia coli. In: Structure, Function, and Genetics of Ribosomes. Eds. Hardesty B., Kramer G. N.Y.: Springer, pp. 766–788.

    Google Scholar 

  3. Kraft A., Lutz C., Lingenhel A., Gröbner P., Piendl W. 1999. Control of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea. Genetics. 152, 1363–1372.

    PubMed  CAS  Google Scholar 

  4. Nikonov S., Nevskaya N., Eliseikina I., Fomenkova N., Nikulin A., Ossina N., Garber M., Jonsson B.-H., Briand C., Svensson A., Aevarsson A., Liljas A. 1996. Crystal structure of the RNA-binding ribosomal protein L1 from Thermus thermophilus. EMBO J. 15, 1350–1359.

    PubMed  CAS  Google Scholar 

  5. Nevskaya N., Tishchenko S., Fedorov R., Al-Karadaghi S., Lilyas A., Kraft A., Piendl W., Garber M., Nikonov S. 2000. Archaeal ribosomal protein L1: The structure provides new insights into RNA binding of the L1 protein family. Structure. 8, 363–371.

    Article  PubMed  CAS  Google Scholar 

  6. Unge J., Al-Karadghi S., Liljas A., Jonsson B.-H., Eliseikina I., Ossina N., Nevskaya N., Fomenkova N., Garber M., Nikonov S. 1997. A mutant form of the ribosomal protein L1 reveals conformational flexibility. FEBS Lett. 411, 53–59.

    Article  PubMed  CAS  Google Scholar 

  7. Ho S.N., Hunt H.D., Horton R.M., Pullen J.K., Pease L.R. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 77, 51–59.

    Article  PubMed  CAS  Google Scholar 

  8. Calderone T.L., Stevens R.D., Oas T.G. 1996. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J. Mol. Biol. 262, 407–412.

    Article  PubMed  CAS  Google Scholar 

  9. Brinkmann U., Mattes R.E., Buckel P. 1989. High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene. 85, 109–114.

    Article  PubMed  CAS  Google Scholar 

  10. Kabsch W. 2001. Integration, scaling, space-group assignment and post refinement. In: International Tables for Crystallography. Eds. Rossmann M.G., Arnold E. Dordrecht: Kluwer, vol. F, chapter 25.2.9.

    Google Scholar 

  11. Storoni L.C., McCoy A.J., Read R.J. 2004. Likelihoodenhanced fast rotation functions. Acta Cryst. D60, 432–438.

    CAS  Google Scholar 

  12. Jones T.A., Zou J.Y., Cowan S.W., Kjeldgaard M. 1991. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110–119.

    CAS  Google Scholar 

  13. Murshudov G.N., Vagin A.A., Dodson E.J. 1997. Refinement of macromolecular structures by the maximumlikelihood method. Acta Cryst. D57, 240–255.

    Google Scholar 

  14. Nevskaya N., Tishchenko S., Volchkov S., Kljashtorny V., Nikonova E., Nikonov O., Nikulin A., Köhrer C., Piendl W., Zimmermann R., Stockley P., Garber M., Nikonov S. 2006. New insights into the interaction of ribosomal protein L1 with RNA. J. Mol. Biol. 355, 747–759.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Garber.

Additional information

Original Russian Text © E.Yu. Nikonova, S.A. Volchkov, V.G. Kljashtorny, S.V. Tishchenko, O.S. Kostareva, N.A. Nevskaya, O.S. Nikonov, A.G. Gabdoulkhakov, A.D. Nikulin, N.L. Davydova, V.A. Streltsov, M.B. Garber, S.V. Nikonov, 2007, published in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 4, pp. 688–696.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikonova, E.Y., Volchkov, S.A., Kljashtorny, V.G. et al. Crystal structures of mutant ribosomal proteins L1. Mol Biol 41, 622–629 (2007). https://doi.org/10.1134/S0026893307040152

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893307040152

Key words

Navigation