Molecular Biology

, Volume 41, Issue 3, pp 427–437 | Cite as

Protein sensors and transducers of cold and osmotic stress in cyanobacteria and plants

  • G. V. Novikova
  • I. E. Moshkov
  • D. A. Los
To the 40th Anniversary of Molekulyarnaya Biologiya Molecular Adaptation


Genome-wide analysis of gene expression at the transcriptional level with DNA microarrays identified almost all genes induced by particular stress in cyanobacteria and plants. Adaptation to stress conditions starts with the perception and transduction of the stress signal. A combination of systematic mutagenesis of potential sensors and transducers with genome transcription profiling allowed significant progress in understanding the mechanisms responsible for the perception of stress signals in photosynthesizing cells. The review considers the recent data on the cyanobacterial and plant signaling systems perceiving and transmitting the cold, hyperosmotic, and salt stress signals.

Key words

cold stress histidine kinases hyperosmotic stress response regulators salt stress cold stress sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stock J., Da R.S. 2000. Signal transduction: Response regulators on and off. Curr. Biol. 10, R420–R424.PubMedCrossRefGoogle Scholar
  2. 2.
    Koretke K.K., Lupas A.N., Warren P.V., Rosenberg M., Brown J.R. 2000. Evolution of two-component signal transduction. Mol. Biol. Evol. 17, 1956–1970.PubMedGoogle Scholar
  3. 3.
    Widmann C., Gibson S., Jarpe M.B., Johnson G.L. 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143–180.PubMedGoogle Scholar
  4. 4.
    Mizuno T., Kaneko T., Tabata S. 1996. Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium, Synechocystis sp. strain PCC 6803. DNA Res. 3, 407–414.PubMedCrossRefGoogle Scholar
  5. 5.
    Kaneko T., Nakamura Y., Sasamoto S., Watanabe A., Kohara M., Matsumoto M., Shimpo S., Yamada M., Tabata S. 2003. Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. DNA Res. 10, 221–228.PubMedCrossRefGoogle Scholar
  6. 6.
    Suzuki I., Los D.A., Kanesaki Y., Mikami K., Murata N. 2000. The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J. 19, 1327–1334.PubMedCrossRefGoogle Scholar
  7. 7.
    Suzuki I., Kanesaki Y., Mikami K., Kanehisa M., Murata N. 2001. Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol. Microbiol. 40, 235–244.PubMedCrossRefGoogle Scholar
  8. 8.
    Suzuki S., Ferjani A., Suzuki I., Murata N. 2004. The SphS-SphR two component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in Synechocystis. J. Biol. Chem. 279, 13234–13240.PubMedCrossRefGoogle Scholar
  9. 9.
    Mikami K., Kanesaki Y., Suzuki I., Murata N. 2002. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol. Microbiol. 46, 905–915.PubMedCrossRefGoogle Scholar
  10. 10.
    Paithoonrangsarid K., Shoumskaya M.A., Kanesaki Y., Satoh S., Tabata S., Los D.A., Zinchenko V.V., Hayashi H., Tanticharoen M., Suzuki I., Murata N. 2004. Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis. J. Biol. Chem. 279, 53078–53086.PubMedCrossRefGoogle Scholar
  11. 11.
    Lopez-Maury L., Garcia-Dominguez M., Florencio F.J., Reyes J.C. 2002. A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803. Mol. Microbiol. 43, 247–256.PubMedCrossRefGoogle Scholar
  12. 12.
    Yamaguchi K., Suzuki I., Yamamoto H., Lyukevich A., Bodrova I., Los D.A., Piven I., Zinchenko V., Kanehisa M., Murata N. 2002. A two-component Mn2+-sensing system negatively regulates expression of the mnt-CAB operon in Synechocystis. Plant Cell. 14, 2901–2913.PubMedCrossRefGoogle Scholar
  13. 13.
    Marin K., Suzuki I., Yamaguchi K., Ribbeck K., Yamamoto H., Kanesaki Y., Hagemann M., Murata N. 2003. Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. USA. 100, 9061–9066.PubMedCrossRefGoogle Scholar
  14. 14.
    Shoumskaya M.A., Paithoonrangsarid K., Kanesaki Y., Los D.A., Zinchenko V.V., Tanticharoen M., Suzuki I., Murata N. 2005. Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis. J. Biol. Chem. 80, 21531–21538.CrossRefGoogle Scholar
  15. 15.
    Aguilar P.S., Hernandez-Arriaga A.M., Cybulski L.E., Erazo A.C., Mendoza D. 2001. Molecular basis of thermosensing: A two-component signal transduction thermometer in Bacillus subtilis. EMBO J. 20, 1681–1691.PubMedCrossRefGoogle Scholar
  16. 16.
    Murata N., Los D.A. 2006. Histidine kinase Hik33 is an important participant in cold signal transduction in cyanobacteria. Physiol. Plant. 126, 17–27.CrossRefGoogle Scholar
  17. 17.
    Kanesaki Y., Suzuki I., Allakhverdiev S.I., Mikami K., Murata N. 2002. Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem. Biophys. Res. Commun. 290, 339–348.PubMedCrossRefGoogle Scholar
  18. 18.
    Shapiguzov A., Lyukevich A.A., Allakhverdiev S.I. Sergeyenko T.V., Suzuki I., Murata N., Los D.A. 2005. Osmotic shrinkage of cells of Synechocystis sp. PCC 6803 by water efflux via aquaporins regulates osmostress-inducible gene expression. Microbiology SGM. 151, 447–455.CrossRefGoogle Scholar
  19. 19.
    Allakhverdiev S.I., Nishiyama Y., Miyairi S., Yamamoto H., Inagaki N., Kanesaki Y., Murata N. 2002. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol. 130, 1443–1453.PubMedCrossRefGoogle Scholar
  20. 20.
    Perk S.H., Zarrinpar A., Lin W.A. 2003. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science. 299, 679–691.CrossRefGoogle Scholar
  21. 21.
    Shiu S.-H., Bleecker A.B. 2001. Plant receptor-like kinase gene family: Diversity, function, and signaling. Sci. Signal Transduction Knowledge Environ. 113, RE22.Google Scholar
  22. 22.
    Urao T., Yamaguchi-Shinozaki K., Shinozaki K. 2001. Plant histidine kinases: An emerging picture of two-component signal transduction in hormone and environmental responses. Sci. Signal Transduction Knowledge Environ. 113, RE18.Google Scholar
  23. 23.
    Urao T., Yakubov B., Satoh R., Yamaguchi-Shinozaki K., Seki M., Hirayama T., Shinozaki K. 1999. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell. 11, 1743–1754.PubMedCrossRefGoogle Scholar
  24. 24.
    Raitt D.C., Posas F., Saito H. 2000. Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of Hog1 MAPK pathway. EMBO J. 19, 4623–4631.PubMedCrossRefGoogle Scholar
  25. 25.
    Reiser V., Salah S.M., Ammerer G. 2000. Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nature Cell Biol. 2, 620–627.PubMedCrossRefGoogle Scholar
  26. 26.
    Inoue T., Higuchi M., Hashimoto Y., Seki M., Kobayashi T., Takara S., Shinozaki K., Kakimoto T. 2001. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature. 409, 1060–1063.PubMedCrossRefGoogle Scholar
  27. 27.
    Reiser V., Raitt D.C., Saito H. 2003. Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J. Cell Biol. 161, 1035–1040.PubMedCrossRefGoogle Scholar
  28. 28.
    Tamura T., Hara K., Yamaguchi Y., Koizumi N., Sano H. 2003. Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol. 131, 454–462.PubMedCrossRefGoogle Scholar
  29. 29.
    Shiu S.-H., Bleecker A.B. 2003. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 132, 530–543.PubMedCrossRefGoogle Scholar
  30. 30.
    MAPK Group. 2002. Mitogen-activated protein kinase cascades in plants: A new nomenclature. Trends Plant Sci. 7, 301–308.CrossRefGoogle Scholar
  31. 31.
    Jonak C., Okresz L., Bogre L., Hirt H. 2002. Complexity, cross talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol. 5, 415–424.PubMedCrossRefGoogle Scholar
  32. 32.
    Ichimura K., Mizoguchi T., Yoshida R., Yuasa T., Shinozaki K. 2000. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 24, 655–665.PubMedCrossRefGoogle Scholar
  33. 33.
    Droillard M.-J., Boudsocq M., Barbier-Brygoo H., Lauriere C. 2002. Different protein kinase families are activated by osmotic stress in Arabidopsis thaliana cell suspension. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett. 527, 43–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Droillard M.-J., Boudsocq M., Barbier-Brygoo H., Lauriere C. 2004. Involvement of MPK4 in osmotic stress response pathways in cell suspension and plantlets of Arabidopsis thaliana: Activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett. 574, 42–48.PubMedCrossRefGoogle Scholar
  35. 35.
    Matsuoka D., Nanmori T., Sato K., Fukami Y., Kikkawa U., Yasuda T. 2002. Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J. 29, 637–647.PubMedCrossRefGoogle Scholar
  36. 36.
    Huang Y., Li H., Gupta P., Morris P., Luan S., Kieber J.J. 2000. AtMPK4, an Arabidopsis homolog of mitogenactivated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol. 122, 1301–1310.PubMedCrossRefGoogle Scholar
  37. 37.
    Teige M., Scheikl E., Eulgem T., Doczi R., Ichimura K., Shinozaki K., Dangl J.L., Hirt H. 2004. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell. 15, 141–152.PubMedCrossRefGoogle Scholar
  38. 38.
    Asai T., Tena G., Plotnikova J., Willmann M.R., Chiu W.-L., Gomez-Gomez L., Boller T., Ausubel F.M., Sheen J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature. 415, 977–983.PubMedCrossRefGoogle Scholar
  39. 39.
    Kreps J.A., Wu Y.J., Chang H.S., Zhu T., Wang X., Harper J.F. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stresses. Plant Physiol. 130, 2129–2141.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee B.H., Henderson D.A., Zhu J.K. 2005. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell. 17, 3155–3175.PubMedCrossRefGoogle Scholar
  41. 41.
    Feilner T., Hultschig C., Lee J., Meyer S., Immink R.G.H., Kenig A., Possling A., Seitz H., Beveridge A., Scheel D., Cahill D.J., Lehrach H., Kreutzberger J., Kersten B. 2005. High throughput identification of potential Arabidopsis mitogen-activated protein kinases substrates. Moll. Cell. Proteom. 4, 1558–1568.CrossRefGoogle Scholar
  42. 42.
    Cheng S.H., Willmann M.R., Chen H.C., Sheen J. 2002. Calcium signalling through protein kinases: The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 129, 469–485.PubMedCrossRefGoogle Scholar
  43. 43.
    Saijo Y., Hata S., Kyozuka J., Shimamoto K., Izui K. 2000. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23, 319–327.PubMedCrossRefGoogle Scholar
  44. 44.
    Chehab E.W., Patharker O.R., Hegeman A.D., Taybi T., Cushman J.C. 2004. Autophosphorylation and subcellular localization dynamics of a salt-and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiol. 135, 1430–1446.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhu J.-K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247–273.PubMedCrossRefGoogle Scholar
  46. 46.
    Ward J.M., Hirschi K.D., Sze H. 2003. Plants pass the salt. Trends Plant Sci. 8, 200–201.PubMedCrossRefGoogle Scholar
  47. 47.
    Gong D., Guo Y., Schumaker R.S., Zhu J.-K. 2004. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol. 134, 919–926.PubMedCrossRefGoogle Scholar
  48. 48.
    Ohta M., Guo Y., Halfter U., Zhu J.-K. 2003. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc. Natl. Acad. Sci. USA. 100, 11771–11776.PubMedCrossRefGoogle Scholar
  49. 49.
    Cheng N.-H., Pittman J.K., Zhu J.-K., Hirschi K.D. 2004. The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J. Biol. Chem. 279, 2922–2926.PubMedCrossRefGoogle Scholar
  50. 50.
    Qiu Q.-S., Guo Y., Quintero F., Pardo J.M., Schumaker K.S., Zhu J.K. 2004. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by salt-overlysensitive (SOS) pathway. J. Biol. Chem. 279, 207–215.PubMedCrossRefGoogle Scholar
  51. 51.
    Ulm R., Ichimura K., Mizoguchi T., Peck S.C., Zhu T., Wang X., Shinozaki K., Paszkowski J. 2002. Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J. 21, 6483–6493.PubMedCrossRefGoogle Scholar
  52. 52.
    Gupta R., Luan S. 2003. Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol. 132, 1149–1152.PubMedCrossRefGoogle Scholar
  53. 53.
    Meskiene I., Baudouin E., Schweighofer A., Liwosz A., Jonak C., Rodriguez P., Jelinek H., Hirt H. 2003. Stressinduced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J. Biol. Chem. 278, 18945–18952.PubMedCrossRefGoogle Scholar
  54. 54.
    Schweighofer A., Hirt H., Meskiene I. 2004. Plant PP2C phosphatases: Emerging functions in stress signaling. Trends Plant Sci. 9, 236–243.PubMedCrossRefGoogle Scholar
  55. 55.
    Shinozaki K., Yamaguchi-Shinozaki K., Seki M. 2003. Regulatory network of gene expression in the drought and cold stress response. Curr. Opin. Plant Biol. 6, 410–417.PubMedCrossRefGoogle Scholar
  56. 56.
    Olsen A.N., Ernst H.A., Lo Leggio L., Skiver K. 2005. NAC transcription factors: Structurally distinct, functionally diverse. Trends Plant Sci. 10, 79–87.PubMedCrossRefGoogle Scholar
  57. 57.
    Nogueira F.T.S., Scholgl P.S., Camargo S.R., Fernandez J.H., De Rosa V.E., Pompermayer P., Arruda P. 2005. SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci. 169, 93–106.CrossRefGoogle Scholar
  58. 58.
    Rabbani M.A., Maruyama K., Abe H., Khan M.A., Katsura K., Ito Y., Yoshiwara K., Seki K., Shinozaki K., Yamaguchi-Shinozaki K. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133, 1755–1767.PubMedCrossRefGoogle Scholar
  59. 59.
    Shimizu H., Sato K., Berberich T., Miyazaki A., Ozaki R., Imai R., Kusano T. 2005. LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling in rice plants. Plant Cell Physiol. 46, 1623–1634.PubMedCrossRefGoogle Scholar
  60. 60.
    Nakashima K., Yamaguchi-Shinozaki K. 2006. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol. Plant. 126, 62–71.CrossRefGoogle Scholar
  61. 61.
    Chinnusamy V., Zhu J., Zhu J.K. 2006. Gene regulation during cold acclimation in plants. Physiol. Plant. 126, 62–71.CrossRefGoogle Scholar
  62. 62.
    Benedict C., Geisler M., Trygg J., Huner N., Hurruy V. 2006. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis. Plant Physiol. 141, 1219–1232.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhu J., Shi H., Lee B.H., Damsz B., Cheng S., Stirm V., Zhu J.-K., Hassegawa P.M., Bressan R.A. 2004. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc. Natl. Acad. Sci. USA. 101, 9873–9878.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • G. V. Novikova
    • 1
  • I. E. Moshkov
    • 1
  • D. A. Los
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations