Skip to main content
Log in

Genome instability and oncogenesis

  • Molecular Medicine
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Molecular alterations leading to genome instability play a key role in tumor development. The basic causes of genetic instability of tumor cells are considered, including distorted regulation of the intracellular level of endogenous mutagens, in particular, reactive oxygen species; impaired fidelity of DNA replication and mitotic chromosome segregation; defects in DNA repair systems; and inactivation of cell-cycle checkpoints, which arrest proliferation of abnormal cells. The review discusses the causes of the tissue specificity of carcinogenesis due to genetic instability, as well as prospects of developing new means to control tumor growth via diminishing genome instability or using defects in the control of genome integrity for selective elimination of neoplastic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanahan D., Weinberg R.A. 2000. The hallmarks of cancer. Cell. 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  2. Vogelstein B., Kinzler K. 2004. Cancer genes and the pathways they control. Nat. Med. 10, 789–799.

    Article  PubMed  CAS  Google Scholar 

  3. Kopnin B.P. 2004. Molecular mechanisms of carcinogenesis, In: Entsiklopediya klinicheskoi onkologii (Encyclopedia of Clinical Oncology), Ed. Davidov M.I., Moscow: RLS Press, pp. 34–53.

    Google Scholar 

  4. Sieber O.M., Heinimann K., Tomlinson I.P. 2003. Genomic instability: The engine of tumorigenesis? Nat. Rev. Cancer. 3, 701–708.

    Article  PubMed  CAS  Google Scholar 

  5. Sablina A.A., Budanov A.V., Ilyinskaya G.V., Agapova L.S., Kravchenko J.E., Chumakov P.M. 2005. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313.

    Article  PubMed  CAS  Google Scholar 

  6. Kopnin P.B., Agapova L.S., Kopnin B.P., Chumakov P.M. 2006. Novel Ras-sestrins pathways contribute to oncogenic Ras-induced ROS up-regulation and genetic instability. Cancer Res. Submitted.

  7. Vafa O., Wade M., Kern S., Beeche M., Pandita T.K., Hampton G.M., Wahl G.M. 2002. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: A mechanism for oncogene-induced genetic instability. Mol. Cell. 9, 1031–1044.

    Article  PubMed  CAS  Google Scholar 

  8. Carcamo J.M., Golde D.W. 2006. Antioxidants prevent oxidative DNA damage and cellular transformation elicited by the over-expression of c-MYC. Mutat. Res. 593, 64–79.

    PubMed  Google Scholar 

  9. Hussain S.P., Amstad P., He P., Robles A., Lupold S., Kaneko I., Ichimiya M., Sengupta S., Mechanic L., Okamura S., Hofseth L.J., Moake M., Nagashima M., Forrester K.S., Harris C.C. 2004. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res. 64, 2350–2356.

    Article  PubMed  CAS  Google Scholar 

  10. Yoon K.A., Nakamura Y., Arakawa H. 2004. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J. Hum. Genet. 49, 134–140.

    Article  PubMed  CAS  Google Scholar 

  11. Budanov A.V., Sablina A.A., Feinstein E., Koonin E.V., Chumakov P.M. 2004. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 304, 596–600.

    Article  PubMed  CAS  Google Scholar 

  12. Seru R., Mondola P., Damiano S., Svegliati S., Agnese S., Avvedimento E.V., Santillo M. 2004. HaRas activates the NADPH oxidase complex in human neuroblastoma cells via extracellular signal-regulated kinase 1/2 pathway. J. Neurochem. 91, 613–622.

    Article  PubMed  CAS  Google Scholar 

  13. Dang C.V., Li F., Lee L.A. 2005. Could MYC induction of mitochondrial biogenesis be linked to ROS production and genomic instability? Cell Cycle. 4, 1465–1466.

    PubMed  CAS  Google Scholar 

  14. Lala P.K., Chakraborty C. 2001. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2, 149–156.

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi M., Mutoh M., Shoji Y., Kamanaka Y., Naka M., Maruyama T., Sugimura T., Wakabayashi K. 2003. Transfection of K-rasAsp12 cDNA markedly elevates IL-1β-and lipopolysaccharide-mediated inducible nitric oxide synthase expression in rat intestinal epithelial cells. Oncogene. 22, 7667–7676.

    Article  PubMed  CAS  Google Scholar 

  16. Calvisi D.F., Ladu S., Hironaka K., Factor V.M., Thorgeirsson S.S. 2004. Vitamin E down-modulates iNOS and NADPH oxidase in c-Myc/TGF-α transgenic mouse model of liver cancer. J. Hepatol. 41, 815–822.

    Article  PubMed  CAS  Google Scholar 

  17. Philip M., Rowley D.A., Schreiber H. 2004. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol. 14, 433–439.

    Article  PubMed  CAS  Google Scholar 

  18. Sawa T., Ohshima H. 2006. Nitrative DNA damage in inflammation and its possible role in carcinogenesis. Nitric Oxide. 14, 91–100.

    Article  PubMed  CAS  Google Scholar 

  19. Cougot D., Neuveut C., Buendia M.A. 2005. HBV induced carcinogenesis. J. Clin. Virol. 34,Suppl. 1, S75–S78.

    Article  PubMed  CAS  Google Scholar 

  20. Machida K., Cheng K.T., Lai C.K., Jeng K.S., Sung V.M., Lai M.M. 2006. Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J. Virol. 80, 7199–7207.

    Article  PubMed  CAS  Google Scholar 

  21. Kunkel T. 2003. Considering the cancer consequences of altered DNA polymerase function. Cancer Cell. 3, 105–110.

    Article  PubMed  CAS  Google Scholar 

  22. Bavoux C., Hoffmann J.S., Cazaux C. 2005. Adaptation to DNA damage and stimulation of genetic instability: The double-edged sword mammalian DNA polymerase κ. Biochimie. 87, 637–646.

    Article  PubMed  CAS  Google Scholar 

  23. Canitrot Y., Lautier D., Laurent G., Frechet M., Ahmed A., Turhan A.G., Salles B., Cazaux C., Hoffmann J.S. 1999. Mutator phenotype of BCR-ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA polymerase β. Oncogene. 18, 2676–2680.

    Article  PubMed  CAS  Google Scholar 

  24. Machida K., Cheng K.T., Sung V.M., Shimodaira S., Lindsay K.L., Levine A.M., Lai M.Y., Lai M.M. 2004. Hepatitis C virus induces a mutator phenotype: Enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl. Acad. Sci. USA. 101, 4262–4267.

    Article  PubMed  CAS  Google Scholar 

  25. Epeldegui M., Hung Y.P., McQuay A., Ambinder R.F., Martinez-Maza O. 2007. Infection of human B cells with Epstein-Barr virus results in the expression of somatic hypermutation-inducing molecules and in the accrual of oncogene mutations. Mol. Immunol. 44, 934–942.

    Article  PubMed  CAS  Google Scholar 

  26. Bergoglio V., Pillaire M.J., Lacroix-Triki M., Raynaud-Messina B., Canitrot Y., Bieth A., Gares M., Wright M., Delsol G., Loeb L.A., Cazaux C., Hoffmann J.S. 2002. Deregulated DNA polymerase β induces chromosome instability and tumorigenesis. Cancer Res. 62, 3511–3514.

    PubMed  CAS  Google Scholar 

  27. Bavoux C., Leopoldino A.M., Bergoglio V., O-Wang J., Ogi T., Bieth A., Judde J.G., Pena S.D., Poupon M.F., Helleday T., Tagawa M., Machado C., Hoffmann J.S., Cazaux C. 2005. Up-regulation of the error-prone DNA polymerase κ promotes pleiotropic genetic alterations and tumorigenesis. Cancer Res. 65, 325–330.

    PubMed  CAS  Google Scholar 

  28. Goldsby R.E., Lawrence N.A., Hays L.E., Olmsted E.A., Chen X., Singh M., Preston B.D. 2001. Defective DNA polymerase-δ proofreading causes cancer susceptibility in mice. Nat. Med. 7, 638–639.

    Article  PubMed  CAS  Google Scholar 

  29. Fukasawa K. 2005. Centrosome amplification, chromosome instability and cancer development. Cancer Lett. 230, 6–19.

    Article  PubMed  CAS  Google Scholar 

  30. McDermott K.M., Zhang J., Holst C.R., Kozakiewicz K., Singla V., Tlsty T.D. 2006. p16INK4a prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol. 4, 350–365.

    Article  CAS  Google Scholar 

  31. Chae S., Yun C., Um H., Lee J.H., Cho H. 2005. Centrosome amplification and multinuclear phenotypes are induced by hydrogen peroxide. Exp. Mol. Med. 37, 482–487.

    PubMed  CAS  Google Scholar 

  32. Deng C.X. 2006. BRCA1: Cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res. 34, 1416–1426.

    Article  PubMed  CAS  Google Scholar 

  33. Sankaran S., Starita L.M., Simons A.M., Parvin J.D. 2006. Identification of domains of BRCA1 critical for the ubiquitin-dependent inhibition of centrosome function. Cancer Res. 66, 4100–4107.

    Article  PubMed  CAS  Google Scholar 

  34. Rouse J., Jackson S.P. 2002. Interfaces between the detection, signaling, and repair of DNA damage. Science. 297, 547–551.

    Article  PubMed  CAS  Google Scholar 

  35. Kastan M.B., Bartek J. 2004. Cell-cycle checkpoints and cancer. Nature. 432, 316–323.

    Article  PubMed  CAS  Google Scholar 

  36. Sancar A., Lindsey-Boltz L.A., Unsal-Kacmaz K., Linn S. 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85.

    Article  PubMed  CAS  Google Scholar 

  37. Fluckiger A.C., Marcy G., Marchand M., Negre D., Cosset F.L., Mitalipov S., Wolf D., Savatier P., Dehay C. 2006. Cell cycle features of primate embryonic stem cells. Stem Cells. 24, 547–556.

    Article  PubMed  CAS  Google Scholar 

  38. Jiricny J. 2006. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell. Biol. 7, 335–346.

    Article  PubMed  CAS  Google Scholar 

  39. Chao E.C., Lipkin S.M. 2006. Molecular models for the tissue specificity of DNA mismatch repair-deficient carcinogenesis. Nucleic Acids Res. 34, 840–852.

    Article  PubMed  CAS  Google Scholar 

  40. Dip R., Camenisch U., Naegeli H. 2004. Mechanisms of DNA damage recognition and strand discrimination in human nucleotide excision repair. DNA Repair (Amsterdam). 3, 1409–1423.

    Article  CAS  Google Scholar 

  41. Cleaver J.E. 2005. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat. Rev. Cancer. 5, 564–573.

    Article  PubMed  CAS  Google Scholar 

  42. O’Driscoll M., Jeggo P.A. 2006. The role of double-strand break repair: Insights from human genetics. Nat. Rev. Genet. 7, 45–54.

    Article  PubMed  CAS  Google Scholar 

  43. Lavin M.F., Birrell G., Chen P., Kozlov S., Scott S., Gueven N. 2005. ATM signaling and genomic stability in response to DNA damage. Mutat Res. 569, 123–132.

    PubMed  CAS  Google Scholar 

  44. Lavin M.F., Gueven N. 2006. The complexity of p53 stabilization and activation. Cell Death Differ. 13, 941–950.

    Article  PubMed  CAS  Google Scholar 

  45. Levine A.J., Hu W., Feng Z. 2006. The p53 pathway: What questions remain to be explored? Cell Death Differ. 13, 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  46. Rohaly G., Chemnitz J., Dehde S., Nunez A.M., Heukeshoven J., Deppert W., Dornreiter I. 2005. A novel human p53 isoform is an essential element of the ATR-intra-S phase checkpoint. Cell. 122, 21–32.

    Article  PubMed  CAS  Google Scholar 

  47. Fukushima T., Zapata J.M., Singha N.C., Thomas M., Kress C.L., Krajewska M., Krajewski S., Ronai Z., Reed J.C., Matsuzawa S. 2006. Critical function for SIP, a ubiquitin E3 ligase component of the β-catenin degradation pathway, for thymocyte development and G1 checkpoint. Immunity. 24, 29–39.

    Article  PubMed  CAS  Google Scholar 

  48. Yoon K., Smart R.C. 2004. C/EBPalpha is a DNA damage-inducible p53-regulated mediator of the G1 check-point in keratinocytes. Mol. Cell Biol. 24, 10650–10660.

    Article  PubMed  CAS  Google Scholar 

  49. Doumont G., Martoriati A., Beekman C., Bogaerts S., Mee P.J., Bureau F., Colombo E., Alcalay M., Bellefroid E., Marchesi F., Scanziani E., Pelicci P.G., Marine J.C. 2005. G1 checkpoint failure and increased tumor susceptibility in mice lacking the novel p53 target Ptprv. EMBO J. 24, 3093–3103.

    Article  PubMed  CAS  Google Scholar 

  50. Scoumanne A., Chen X. 2006. The epithelial cell transforming sequence 2, a guanine nucleotide exchange factor for Rho GTPases, is repressed by p53 via protein methyltransferases and is required for G1-S transition. Cancer Res. 66, 6271–6279.

    Article  PubMed  CAS  Google Scholar 

  51. Braithwaite A.W., Del Sal G., Lu X. 2006. Some p53-binding proteins that can function as arbiters of life and death. Cell Death Differ. 13, 984–993.

    Article  PubMed  CAS  Google Scholar 

  52. Wu X., Webster S.R., Chen J. 2001. Characterization of tumor-associated Chk2 mutations. J. Biol. Chem. 276, 2971–2974.

    Article  PubMed  CAS  Google Scholar 

  53. Kops G.J., Weaver B.A., Cleveland D.W. 2005. On the road to cancer: Aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer. 5, 773–785.

    Article  PubMed  CAS  Google Scholar 

  54. Yu X., Minter-Dykhouse K., Malureanu L., Zhao W.M., Zhang D., Merkle C.J., Ward I.M., Saya H., Fang G., van Deursen J., Chen J. 2005. Chfr is required for tumor suppression and Aurora A regulation. Nat. Genet. 37, 401–406.

    Article  PubMed  CAS  Google Scholar 

  55. Sengupta S., Harris C.C. 2005. p53: Traffic cop at the crossroads of DNA repair and recombination. Nat. Rev. Mol. Cell. Biol. 6, 44–55.

    Article  PubMed  CAS  Google Scholar 

  56. Agapova L., Ivanov A., Sablina A., Kopnin P., Sokova O., Chumakov P., Kopnin B. 1999. p53-dependent effects of RAS oncogene on chromosome stability and cell cycle checkpoints. Oncogene. 18, 3135–3142.

    Article  PubMed  CAS  Google Scholar 

  57. Agapova L.S., Volodina J.L., Chumakov P.M., Kopnin B.P. 2004. Activation of Ras-Ral pathway attenuates p53-independent DNA damage G2 checkpoint. J. Biol. Chem. 279, 36,382–36,389.

    Article  CAS  Google Scholar 

  58. Cox A.D., Der C.J. 2003. The dark side of Ras: Regulation of apoptosis. Oncogene. 22, 8999–9006.

    Article  PubMed  CAS  Google Scholar 

  59. Pruitt K., Ulku A.S., Frantz K., Rojas R.J., Muniz-Medina V.M., Rangnekar V.M., Der C.J., Shields J.M. 2005. Ras-mediated loss of the pro-apoptotic response protein Par-4 is mediated by DNA hypermethylation through Raf-independent and Raf-dependent signaling cascades in epithelial cells. J. Biol. Chem. 280, 23,363–23,370.

    Article  CAS  Google Scholar 

  60. Le Gac G., Esteve P.O., Ferec C., Pradhan S. 2006. DNA damage-induced downregulation of human Cdc25c and Cdc2 is mediated by co-operation between p53 and maintenance DNA (cytosine-5) methyltransferase 1. J. Biol. Chem. 281, 24,161–24,170.

    Article  Google Scholar 

  61. Rosen E.M., Fan S., Isaacs C. 2005. BRCA1 in hormonal carcinogenesis: Basic and clinical research. Endocr. Relat. Cancer. 12, 533–548.

    Article  PubMed  CAS  Google Scholar 

  62. Shin S., Verma I.M. 2003. BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Proc. Natl. Acad. Sci. USA. 100, 7201–7206.

    Article  PubMed  CAS  Google Scholar 

  63. Chao E.C., Lipkin S.M. 2006. Molecular models for the tissue specificity of DNA mismatch repair-deficient carcinogenesis. Nucleic Acids Res. 34, 840–852.

    Article  PubMed  CAS  Google Scholar 

  64. Schlissel M.S., Kaffer C.R., Curry J.D. 2006. Leukemia and lymphoma: A cost of doing business for adaptive immunity. Genes Dev. 20, 1539–1544.

    Article  PubMed  CAS  Google Scholar 

  65. Kopnin P.B., Kravchenko I.V., Furalyov V.A., Pylev L.N., Kopnin B.P. 2004. Cell type-specific effects of asbestos on intracellular ROS levels, DNA oxidation and G1 cell cycle checkpoint. Oncogene. 23, 8834–8840.

    Article  PubMed  CAS  Google Scholar 

  66. Farmer H., McCabe N., Lord C.J., Tutt A.N., Johnson D.A., Richardson T.B., Santarosa M., Dillon K.J., Hickson I., Knights C., Martin N.M., Jackson S.P., Smith G.C., Ashworth A. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 434, 917–921.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.P. Kopnin, 2007, published in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 2, pp. 369–380.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopnin, B.P. Genome instability and oncogenesis. Mol Biol 41, 329–339 (2007). https://doi.org/10.1134/S0026893307020136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893307020136

Key words

Navigation