Skip to main content
Log in

Neurodegenerative amyloidoses: Yeast model

  • Molecular Medicine
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

More than 20 human diseases are associated with protein misfolding, which results in the appearance of amyloids, fibrillar aggregates of normally soluble proteins. Such diseases are termed amyloid diseases, or amyloidoses. Of these, only prion diseases are transmissible. Amyloids of the prion type are known for lower eukaryotes. While mammalian prions cause neurodegenerative diseases, prions of lower eukaryotes are associated with some nonchromosomally inherited phenotypic traits. The review summarizes the results of studying the prions of yeast Saccharomyces cerevisiae and data obtained using S. cerevisiae as a model to investigate some human amyloidoses such as Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prusiner S.B., Scott M.R., DeArmond S.J., Cohen F.E. 1998. Prion protein biology. Cell. 93, 337–348.

    Article  PubMed  CAS  Google Scholar 

  2. Ter-Avanesyan M.D., Paushkin S.V., Kushnirov V.V., Kochneva-Pervukhova N.V. 1998. Molecular mechanisms of “protein” heredity: Yeast prions. Mol. Biol. 32, 36–46.

    Google Scholar 

  3. Uptain S.M., Lindquist S. 2002. Prions as protein-based genetic elements. Annu. Rev. Microbiol. 56, 703–741.

    Article  PubMed  CAS  Google Scholar 

  4. Derkatch I.L., Bradley M.E., Hong J.Y., Liebman S.W. 2001. Prions affect the appearance of other prions: The story of [PIN +]. Cell. 106, 171–182.

    Article  PubMed  CAS  Google Scholar 

  5. Osherovich L.Z., Weissman J.S. 2001. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI +] prion. Cell. 106, 183–194.

    Article  PubMed  CAS  Google Scholar 

  6. Salnikova A.B., Kryndushkin D.S., Smirnov V.N., et al. 2005. Nonsense suppression in yeast cells overproducing Sup35 (eRF3) is caused by its non-heritable amyloids. J. Biol. Chem. 280, 8808–8812.

    Article  PubMed  CAS  Google Scholar 

  7. King C.Y., Diaz-Avalos R. 2004. Protein-only transmission of three yeast prion strains. Nature. 428, 319–323.

    Article  PubMed  CAS  Google Scholar 

  8. Tanaka M., Chien P., Naber N., et al. 2004. Conformational variations in an infectious protein determine prion strain differences. Nature. 428, 323–328.

    Article  PubMed  CAS  Google Scholar 

  9. Brachmann A., Baxa U., Wickner R.B. 2005. Prion generation in vitro: Amyloid of Ure2p is infectious. EMBO J. 24, 3082–3092.

    Article  PubMed  CAS  Google Scholar 

  10. Kryndushkin D.S., Alexandrov I.M., Ter-Avanesyan M.D., Kushnirov V.V. 2003. Yeast [PSI +] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278, 49636–49643.

    Article  PubMed  CAS  Google Scholar 

  11. Bagriantsev S.N., Liebman S.W. 2004. Specificity of prion assembly in vivo: [PSI +] and [PIN +] form separate structures in yeast. J. Biol. Chem. 279, 51042–51048.

    Article  PubMed  CAS  Google Scholar 

  12. Jones G.W., Tuite M.F. 2005. Chaperoning prions: The cellular machinery for propagating an infectious protein? Bioessays. 27, 823–832.

    Article  PubMed  CAS  Google Scholar 

  13. Kushnirov V.V., Ter-Avanesyan M.D. 1998. Structure and replication of yeast prions. Cell. 94, 13–16.

    Article  PubMed  CAS  Google Scholar 

  14. Ness F., Ferreira P., Cox B.S., Tuite M.F. 2002 Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast. Mol. Cell. Biol. 22, 5593–5605.

    Article  PubMed  CAS  Google Scholar 

  15. Ma J., Lindquist S. 1999. De novo generation of a PrPSc-like conformation in living cells. Nature Cell Biol. 1, 358–361.

    Article  PubMed  CAS  Google Scholar 

  16. Bach S., Talarek N., Andrieu T., et al. 2003. Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nature Biotechnol. 21, 1075–1081.

    Article  CAS  Google Scholar 

  17. Coughlan C.M., Brodsky J.L. 2005. Use of yeast as a model system to investigate protein conformational diseases. Mol. Biotechnol. 30, 171–180.

    Article  PubMed  CAS  Google Scholar 

  18. Koo E.H., Squazzo S.L. 1994. Evidence that production and release of amyloid β-protein involves the endocytic pathway. J. Biol. Chem. 269, 17386–17389.

    PubMed  CAS  Google Scholar 

  19. Xu H., Sweeney D., Wang R., et al. Generation of Alzheimer β-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc. Natl. Acad. Sci. USA. 94, 3748–3752.

  20. Skovronsky D.M., Pijak D.S., Doms R.W., Lee V.M. 2000. A distinct ER/IC γ-secretase competes with the proteasome for cleavage of APP. Biochemistry. 39, 810–817.

    Article  PubMed  CAS  Google Scholar 

  21. Cook D.G., Forman M.S., Sung J.C., et al. 1997. Alzheimer’s Aβ1-42 is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nature Medicine. 3, 1021–1023.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang W., Espinoza D., Hines V., et al. 1997. Characterization of β-amyloid peptide precursor processing by the yeast Yap3 and Mkc7 proteases. Biochim. Biophys. Acta. 1359, 110–122.

    Article  PubMed  CAS  Google Scholar 

  23. Komano H., Seeger M., Gandy S., et al. 1998. Involvement of cell surface glycosyl-phosphatidylinositol-linked aspartyl proteases in α-secretase-type cleavage and ectodomain solubilization of human Alzheimer β-amyloid precursor protein in yeast. J. Biol. Chem. 273, 31648–31651.

    Article  PubMed  CAS  Google Scholar 

  24. Luthi U., Schaerer-Brodbeck C., Tanner S., et al. 2003. Human β-secretase activity in yeast detected by a novel cellular growth selection system. Biochim. Biophys. Acta. 1620, 167–178.

    PubMed  CAS  Google Scholar 

  25. Middendorp O., Ortler C., Neumann U., et al. 2004. Yeast growth selection system for the identification of cell-active inhibitors of β-secretase. Biochim. Biophys. Acta. 1674, 29–39.

    PubMed  CAS  Google Scholar 

  26. Edbauer D., Winkler E., Regula J.T., et al. 2003. Reconstitution of γ-secretase activity. Nature Cell Biol. 5, 486–488.

    Article  PubMed  CAS  Google Scholar 

  27. Le Brocque D., Henry A., Cappai R., et al. 1998. Processing of the Alzheimer’s disease amyloid precursor protein in Pichia pastoris: Immunodetection of α-, β-, and γ-secretase products. Biochemistry. 37, 14958–14965.

    Article  PubMed  Google Scholar 

  28. Tsaponina O.E., Lada A.G., Rubel’ A.A., et al. 2005. Analysis of effects of Aβ-Sup35MC hybrid protein production in yeast Saccaromyces cerevisiae. Ekol. Genet. 3, 24–32.

    CAS  Google Scholar 

  29. Leroy E., Boyer R., Auburger G. 1998. The ubiquitin pathway in Parkinson’s disease. Nature. 395, 451–452.

    Article  PubMed  CAS  Google Scholar 

  30. Lucking C.B., Brice A. 2000. α-Synuclein and Parkinson’s disease. Cell Mol. Life Sci. 57, 1894–1908.

    Article  PubMed  CAS  Google Scholar 

  31. Outeiro T.F., Lindquist S. 2003. Yeast cells provide insight into α-synuclein biology and pathobiology. Science. 302, 1771–1775.

    Article  Google Scholar 

  32. Dixon C., Mathias N., Zweig R.M., et al. 2005. α-Synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast. Genetics. 170, 47–59.

    Article  PubMed  CAS  Google Scholar 

  33. Brandis K.A., Holmes I.F., England S.J. 2006. α-Synuclein fission yeast model: Concentration-dependent aggregation without plasma membrane localization or toxicity. J. Mol. Neurosci. 28, 179–191.

    Article  PubMed  CAS  Google Scholar 

  34. Zabrocki P., Pellens K., Vanhelmont T., et al. 2005. Characterization of α-synuclein aggregation and synergistic toxicity with protein tau in yeast. FEBS J. 272, 1386–1400.

    Article  PubMed  CAS  Google Scholar 

  35. Flower T.R., Chesnokova L.S., Froelich C.A., et al. 2005. Heat shock prevents α-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. J. Mol. Biol. 351, 1081–1100.

    Article  PubMed  CAS  Google Scholar 

  36. Jenco J., Rawlingson A., Daniels B., Morris A. 1998. Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by α-and β-synucleins. Biochemistry. 37, 4901–4909.

    Article  PubMed  CAS  Google Scholar 

  37. de Silva H.A.R., Khan N.L., Wood N.W. 2000. The genetics of Parkinson’s disease. Curr. Opin. Genet. Dev. 3, 292–298.

    Article  Google Scholar 

  38. Griffioen G., Duhamel H., van Damme N., et al. 2006. A yeast-based model of α-synucleinopathy identifies compounds with therapeutic potential. Biochim. Biophys. Acta. 1762, 312–318.

    PubMed  CAS  Google Scholar 

  39. Landles C., Bates G. 2004. Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep. 5, 958–963.

    Article  PubMed  CAS  Google Scholar 

  40. Harjes P., Wanker E.E. 2003. The hunt for huntingtin function: Interaction partners tell many different stories. Trends Biochem. Sci. 28, 425–433.

    Article  PubMed  CAS  Google Scholar 

  41. Krobitsch S., Lindquist S. 2000. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA. 97, 1589–1594.

    Article  PubMed  CAS  Google Scholar 

  42. Kimura Y., Koitabashi S., Kakizuka A., Fujita T. 2001. Initial process of polyglutamine aggregate formation in vivo. Genes Cells. 6, 887–897.

    Article  PubMed  CAS  Google Scholar 

  43. Kimura Y., Koitabashi S., Kakizuka A., Fujita T. 2002. Circumvention of chaperone requirement for aggregate formation of a short polyglutamine tract by the coexpression of a long polyglutamine tract. J. Biol. Chem. 277, 37536–37541.

    Article  PubMed  CAS  Google Scholar 

  44. Muchowski P.J., Schaffar G., Sittler A., et al. 2000. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA. 97, 7841–7846.

    Article  PubMed  CAS  Google Scholar 

  45. Meriin A.B., Zhang X., He X., et al. 2002. Huntingtin toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol. 157, 997–1004.

    Article  PubMed  CAS  Google Scholar 

  46. Meriin A.B., Zhang X., Miliaras N.B., et al. 2003. Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. Mol. Cell. Biol. 23, 7554–7565.

    Article  PubMed  CAS  Google Scholar 

  47. Kimura Y., Koitabashi S., Kakizuka A., Fujita T. 2004. The role of pre-existing aggregates in Hsp104-dependent polyglutamine aggregate formation and epigenetic change of yeast prions. Genes Cells. 9, 685–696.

    Article  PubMed  CAS  Google Scholar 

  48. Derkatch I.L., Uptain S.M., Outeiro T.F., et al. 2004. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI +] prion in yeast and aggregation of Sup35 in vitro. Proc. Natl. Acad. Sci. USA. 101, 12934–12939.

    Article  PubMed  CAS  Google Scholar 

  49. Duennwald M.L., Jagadish S., Giorgini F., et al. 2006. A network of protein interactions determines polyglutamine toxicity. Proc. Natl. Acad. Sci. USA. 103, 11051–11056.

    Article  PubMed  CAS  Google Scholar 

  50. Willingham S., Outeiro T.F., DeVit M.J., et al. 2003. Yeast genes that enhance the toxicity of a mutant huntingtin fragment or α-synuclein. Science. 2, 1769–1772

    Article  Google Scholar 

  51. Giorgini F., Guidetti P., Nguyen Q., et al. 2005. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nature Genet. 37, 526–531.

    Article  PubMed  CAS  Google Scholar 

  52. Hu Y., Liu L., Kmiec E.B. 2003. Reduction of Htt inclusion formation in strains of Saccharomyces cerevisiae deficient in certain DNA repair functions: A statistical analysis of phenotype. Exp. Cell. Res. 291, 46–55.

    Article  PubMed  CAS  Google Scholar 

  53. Hughes R.E., Lo R.S., Davis C., et al. 2001. Altered transcription in yeast expressing expanded polyglutamine. Proc. Natl. Acad. Sci. USA. 98, 13201–13206.

    Article  PubMed  CAS  Google Scholar 

  54. Colby D.W., Chu Y., Cassady J.P., et al. 2004. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc. Natl. Acad. Sci. USA. 101, 17616–17621.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.B. Vishnevskaya, V.V. Kushnirov, M.D. Ter-Avanesyan, 2007, published in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 2, pp. 346–354.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vishnevskaya, A.B., Kushnirov, V.V. & Ter-Avanesyan, M.D. Neurodegenerative amyloidoses: Yeast model. Mol Biol 41, 308–315 (2007). https://doi.org/10.1134/S0026893307020112

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893307020112

Key words

Navigation