Skip to main content
Log in

Molecular basis of Alzheimer’s disease

  • Molecular Medicine
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Studies of the molecular mechanisms of Alzheimer’s disease (AD) have led to two major achievements. First, genes with mutations causing AD (PS1 and PS2 presenilin genes and APP) or bearing a risk factor polymorphism (APOE) have been described. Second, a new type of proteases has been identified along with the mechanisms regulating cell differentiation and development via intramembrane proteolysis. These mechanisms are apparently universal for various cell systems and organisms. Presenilin is a catalytic component of the tetraprotein complex (ɛ-/γ-secretase) that cleaves type I transmembrane proteins. Type II transmembrane proteins are cleaved by IMPAS/SPP aspartate proteases, found recently. The processing of transmembrane proteins by intramembrane proteases generates signal peptides, transcription factors, and short hydrophobic proteins (fragments of transmembrane domains), which can play both a physiological role and a key role in pathological events associated with aging (β-amyloid in AD). About 160 PS1 mutations, more than ten PS2 mutations, and 21 APP mutations have been described to date. Preclinical diagnosis has become possible for some early-onset forms of AD. Since early-and late-onset forms of AD are similar in pathogenesis, studies of proteolysis driven by intramembrane aspartate proteases may eventually contribute to the development of drugs directly affecting the processing of transmembrane proteins as a primary mechanism of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferri C.P., Prince M., Brayne C., et al. 2005. Global prevalence of dementia: A Delphi consensus study. Lancet. 366, 2112–2117.

    Article  PubMed  Google Scholar 

  2. Serpell L.C. 2000. Alzheimer’s amyloid fibrils: Structure and assembly. Biochim. Biophys. Acta. 1502, 16–30.

    PubMed  CAS  Google Scholar 

  3. Glenner G.G., Wong C.W. 1984. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890.

    Article  PubMed  CAS  Google Scholar 

  4. Glenner G.G., Wong C.W. 1984. Alzheimer’s disease and Down’s syndrome: Sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131–1135.

    Article  PubMed  CAS  Google Scholar 

  5. Goldgaber D., Lerman M.I., McBride O.W., et al. 1987. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science. 235, 877–880.

    Article  PubMed  CAS  Google Scholar 

  6. Kang J., Lemaire H.G., Unterbeck A., et al. 1987. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature. 325, 733–736.

    Article  PubMed  CAS  Google Scholar 

  7. Goate A., Chartier-Harlin M.C., Mullan M., et al. 1991. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 349, 704–706.

    Article  PubMed  CAS  Google Scholar 

  8. Hardy J.A., Higgins G.A. 1992. Alzheimer’s disease: The amyloid cascade hypothesis. Science. 256, 184–185.

    Article  PubMed  CAS  Google Scholar 

  9. Hardy J. 2003. The Genetics of Alzheimer’s Disease. In: Alzheimer’s Disease and Related Disorders: Research Advances. Eds. Iqbal K., Winblad B. Bucharest: Ana. Aslan. Intl. Acad. of Aging, 29–47.

    Google Scholar 

  10. St. George-Hyslop P., Haines J., Rogaev E., et al. 1992. Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nature Genet. 2, 330–334.

    Article  PubMed  CAS  Google Scholar 

  11. Schellenberg G.D., Bird T.D., Wijsman E.M., et al. 1992. Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science. 258, 668–671.

    Article  PubMed  CAS  Google Scholar 

  12. Mullan M., Houlden H., Windelspecht M., et al. 1992. A locus for familial early-onset Alzheimer’s disease on the long arm of chromosome 14, proximal to the α1-antichymotrypsin gene. Nature Genet. 2, 340–342.

    Article  PubMed  CAS  Google Scholar 

  13. Van Broeckhoven C., Backhovens H., Cruts M., et al. 1992. Mapping of a gene predisposing to early-onset Alzheimer’s disease to chromosome 14q24.3. Nature Genet. 2, 335–339.

    Article  PubMed  Google Scholar 

  14. Rogaev E.I., Sherrington R., Rogaeva E.A., et al. 1995. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 376, 775–778.

    Article  PubMed  CAS  Google Scholar 

  15. Sherrington R., Rogaev E.I., Liang Y., et al. 1995. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 375, 754–760.

    Article  PubMed  CAS  Google Scholar 

  16. Levy-Lahad E., Wasco W., Poorkaj P., et al. 1995. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 269, 973–977.

    Article  PubMed  CAS  Google Scholar 

  17. The Alzheimer Research Forum http://www.alzforum.org/res/com/mut/default.asp

  18. Alzheimer Disease & Frontotemporal Dementia Mutation Database http://www.molgen.ua.ac.be/ admutations/

  19. Crook R., Verkkoniemi A., Perez-Tur J., et al. 1998. A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nature Med. 4, 452–455.

    Article  PubMed  CAS  Google Scholar 

  20. Pericak-Vance M.A., Bebout J.L., Gaskell P.C. Jr., et al. 1991. Linkage studies in familial Alzheimer disease: Evidence for chromosome 19 linkage. Am. J. Hum. Genet. 48, 1034–1050.

    PubMed  CAS  Google Scholar 

  21. Corder E.H., Saunders A.M., Strittmatter W.J., et al. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 261, 921–923.

    Article  PubMed  CAS  Google Scholar 

  22. Chartier-Harlin M.C., Parfitt M., Legrain S., et al. 1994. Apolipoprotein E, ɛ4 allele as a major risk factor for sporadic early-and late-onset forms of Alzheimer’s disease: Analysis of the 19q13.2 chromosomal region. Human Mol. Genet. 3, 569–574.

    Article  CAS  Google Scholar 

  23. Rogaev E.I. Genetic factors and a polygenic model of Alzheimer’s disease. Genetika. 35, 1558–1571.

  24. Riazanskaia N., Lukiw W.J., Grigorenko A., et al. 2002. Regulatory region variability in the human presenilin-2 (PSEN2) gene: Potential contribution to the gene activity and risk for AD. Mol. Psychiatry. 7, 891–898.

    Article  PubMed  CAS  Google Scholar 

  25. Corder E.H., Saunders A.M., Risch N.J., et al. 1994. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature Genet. 7, 180–184.

    Article  PubMed  CAS  Google Scholar 

  26. Lesne S., Koh M.T., Kotilinek L., et al. 2006. A specific amyloid-β protein assembly in the brain impairs memory. Nature. 440, 352–357.

    Article  PubMed  CAS  Google Scholar 

  27. Naslund J., Haroutunian V., Mohs R., et al. 2000. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. J. Am. Med. Ass. 283, 1571–1577.

    Article  CAS  Google Scholar 

  28. Grundke-Iqbal I., Iqbal K., Tung Y.C., et al. 1986. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA. 83, 4913–4917.

    Article  PubMed  CAS  Google Scholar 

  29. Baker M., Litvan I., Houlden H., et al. 1999. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Human Mol. Genet. 8, 711–715.

    Article  CAS  Google Scholar 

  30. Theuns J., Brouwers N., Engelborghs S., et al. 2006. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am. J. Hum. Genet. 78, 936–946.

    Article  PubMed  CAS  Google Scholar 

  31. Bertram L., Blacker D., Mullin K., et al. 2000. Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q. Science. 290, 2302–2303.

    Article  PubMed  CAS  Google Scholar 

  32. Pericak-Vance M.A., Bass M.P., Yamaoka L.H., et al. 1997. Complete genomic screen in late-onset familial Alzheimer disease: Evidence for a new locus on chromosome 12. J. Am. Med. Assoc. 278, 1237–1241.

    Article  CAS  Google Scholar 

  33. Kehoe P., Wavrant-De Vrieze V.F., Crook R., et al. 1999. A full genome scan for late onset Alzheimer’s disease. Human Mol. Genet. 8, 237–245.

    Article  CAS  Google Scholar 

  34. Prasher V.P., Farrer M.J., Kessling A.M., et al. 1998. Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann. Neurol. 43, 380–383.

    Article  PubMed  CAS  Google Scholar 

  35. Rovelet-Lecrux A., Hannequin D., Raux G., et al. 2006. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet. 38, 24–26.

    Article  PubMed  CAS  Google Scholar 

  36. Moliaka Y.K., Grigorenko A., Madera D., Rogaev E.I. 2004. Impas 1 possesses endoproteolytic activity against multipass membrane protein substrate cleaving the presenilin 1 holoprotein. FEBS Lett. 557, 185–192.

    Article  PubMed  CAS  Google Scholar 

  37. Thinakaran G., Borchelt D.R., Lee M.K., et al. 1996. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron. 17, 181–190.

    Article  PubMed  CAS  Google Scholar 

  38. Moon R.T., Kohn A.D., De Ferrari G.V., Kaykas A. 2004. WNT and β-catenin signalling: Diseases and therapies. Nature Rev. Genet. 5, 691–701.

    Article  CAS  Google Scholar 

  39. Mattson M.P., Chan S.L. 2003. Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium. 34, 385–397.

    Article  PubMed  CAS  Google Scholar 

  40. Scheuner D., Eckman C., Jensen M., et al. 1996. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Med. 2, 864–870.

    Article  PubMed  CAS  Google Scholar 

  41. Kimberly W.T., Zheng J.B., Guenette S.Y., Selkoe D.J. 2001. The intracellular domain of the β-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J. Biol. Chem. 276, 40,288–40,292.

    CAS  Google Scholar 

  42. Cao X., Sudhof T.C. 2004. Dissection of amyloid-β precursor protein-dependent transcriptional transactivation. J. Biol. Chem. 279, 24,601–24,611.

    CAS  Google Scholar 

  43. Borchelt D.R., Thinakaran G., Eckman C.B., et al. 1996. Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1-42/1-40 ratio in vitro and in vivo. Neuron. 17, 1005–1013.

    Article  PubMed  CAS  Google Scholar 

  44. De Strooper B., Saftig P., Craessaerts K., et al. 1998. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature. 391, 387–390.

    Article  PubMed  Google Scholar 

  45. Zhang Z., Nadeau P., Song W., et al. 2000. Presenilins are required for γ-secretase cleavage of β-APP and transmembrane cleavage of Notch-1. Nature Cell Biol. 2, 463–465.

    Article  PubMed  CAS  Google Scholar 

  46. Wolfe M.S., Xia W., Ostaszewski B.L., et al. 1999. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature. 398, 513–517.

    Article  PubMed  CAS  Google Scholar 

  47. Xia X., Wang P., Sun X., et al. 2002. The aspartate-257 of presenilin 1 is indispensable for mouse development and production of β-amyloid peptides through β-catenin-independent mechanisms. Proc. Natl. Acad. Sci. USA. 99, 8760–8765.

    Article  PubMed  CAS  Google Scholar 

  48. Steiner H., Duff K., Capell A., et al. 1999. A loss of function mutation of presenilin-2 interferes with amyloid β-peptide production and Notch signaling. J. Biol. Chem. 274, 28,669–28,673.

    CAS  Google Scholar 

  49. Tomita T., Watabiki T., Takikawa R., et al. 2001. The first proline of PALP motif at the C terminus of presenilins is obligatory for stabilization, complex formation, and γ-secretase activities of presenilins. J. Biol. Chem. 276, 33273–33281.

    Article  PubMed  CAS  Google Scholar 

  50. Jankowsky J.L., Fadale D.J., Anderson J., et al. 2004. Mutant presenilins specifically elevate the levels of the 42-residue β-amyloid peptide in vivo: Evidence for augmentation of a 42-specific γ-secretase. Human Mol. Genet. 13, 159–170.

    Article  CAS  Google Scholar 

  51. Li X., Greenwald I. 1997. HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proc. Natl. Acad. Sci. USA. 94, 12204–12209.

    Article  PubMed  CAS  Google Scholar 

  52. Levitan D., Greenwald I. 1998. Effects of SEL-12 presenilin on LIN-12 localization and function in Caenorhabditis elegans. Development. 125, 3599–3606.

    PubMed  CAS  Google Scholar 

  53. Shen J., Bronson R.T., Chen D.F., et al. 1997. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell. 89, 629–639.

    Article  PubMed  CAS  Google Scholar 

  54. Herreman A., Hartmann D., Annaert W., et al. 1999. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc. Natl. Acad. Sci. USA. 96, 11,872–11,877.

    Article  CAS  Google Scholar 

  55. Swiatek P.J., Lindsell C.E., del Amo F.F., et al. 1994. Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707–719.

    PubMed  CAS  Google Scholar 

  56. De Strooper B., Annaert W., Cupers P., et al. 1999. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature. 398, 518–522.

    Article  PubMed  Google Scholar 

  57. Takasugi N., Tomita T., Hayashi I., et al. 2003. The role of presenilin cofactors in the γ-secretase complex. Nature. 422, 438–441.

    Article  PubMed  CAS  Google Scholar 

  58. Iso T., Kedes L., Hamamori Y. 2003. HES and HERP families: Multiple effectors of the Notch signaling pathway. J. Cell Physiol. 194, 237–255.

    Article  PubMed  CAS  Google Scholar 

  59. Vetrivel K.S., Zhang Y.W., Xu H., Thinakaran G. 2006. Pathological and physiological functions of presenilins. Mol. Neurodegener. 1, 4.

    Article  PubMed  Google Scholar 

  60. Yu G., Chen F., Levesque G., et al. 1998. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains γ-catenin. J. Biol. Chem. 273, 16,470–16,475.

    CAS  Google Scholar 

  61. Thinakaran G., Harris C.L., Ratovitski T., et al. 1997. Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J. Biol. Chem. 272, 28,415–28,422.

    Article  CAS  Google Scholar 

  62. Li Y.M., Lai M.T., Xu M., et al. 2000. Presenilin 1 is linked with γ-secretase activity in the detergent solubilized state. Proc. Natl. Acad. Sci. USA. 97, 6138–6143.

    Article  PubMed  CAS  Google Scholar 

  63. Li Y.M., Xu M., Lai M.T., et al. 2000. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature. 405, 689–694.

    Article  PubMed  CAS  Google Scholar 

  64. Yu G., Nishimura M., Arawaka S., et al. 2000. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature. 407, 48–54.

    Article  PubMed  CAS  Google Scholar 

  65. Goutte C., Hepler W., Mickey K.M., Priess J.R. 2000. aph-2 encodes a novel extracellular protein required for GLP-1-mediated signaling. Development. 127, 2481–2492.

    PubMed  CAS  Google Scholar 

  66. Shah S., Lee S.F., Tabuchi K., et al. 2005. Nicastrin functions as a gamma-secretase-substrate receptor. Cell. 122, 435–447.

    Article  PubMed  CAS  Google Scholar 

  67. Edbauer D., Winkler E., Haass C., Steiner H. 2002. Presenilin and nicastrin regulate each other and determine amyloid β-peptide production via complex formation. Proc. Natl. Acad. Sci. USA. 99, 8666–8671.

    PubMed  CAS  Google Scholar 

  68. Kimberly W.T., laVoie M.J., Ostaszewski B.L., et al. 2002. Complex N-linked glycosylated nicastrin associates with active γ-secretase and undergoes tight cellular regulation. J. Biol. Chem. 277, 35,113–35,117.

    Article  CAS  Google Scholar 

  69. Goutte C., Tsunozaki M., Hale V.A., Priess J.R. 2002. APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proc. Natl. Acad. Sci. USA. 99, 775–779.

    Article  PubMed  CAS  Google Scholar 

  70. Francis R., McGrath G., Zhang J., et al. 2002. aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev.Cell. 3, 85–97.

    Article  PubMed  CAS  Google Scholar 

  71. Lee S.F., Shah S., Li H., et al., et al. 2002. Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-β precursor protein and Notch. J. Biol. Chem. 277, 45013–45019.

    Article  PubMed  CAS  Google Scholar 

  72. Luo W.J., Wang H., Li H., et al. 2003. PEN-2 and APH-1 coordinately regulate proteolytic processing of presenilin 1. J. Biol. Chem. 278, 7850–7854.

    Article  PubMed  CAS  Google Scholar 

  73. Gu Y., Chen F., Sanjo N., et al. 2003. APH-1 interacts with mature and immature forms of presenilins and nicastrin and may play a role in maturation of presenilin-nicastrin complexes. J. Biol. Chem. 278, 7374–7380.

    Article  PubMed  CAS  Google Scholar 

  74. Edbauer D., Winkler E., Regula J.T., et al. 2003. Reconstitution of γ-secretase activity. Nature Cell Biol. 5, 486–488.

    Article  PubMed  CAS  Google Scholar 

  75. Fraering P.C., Ye W., Strub J.M., et al. 2004. Purification and characterization of the human γ-secretase complex. Biochemistry. 43, 9774–9789.

    Article  PubMed  CAS  Google Scholar 

  76. Rogaev E.I., Grigorenko A., Ryazanskaya N., et al. Evolution and modulation of Alzheimer’s disease associated genes and families of related proteins. 6th Annual International Human Genome Meeting. 2001. Edinburgh, UK. Program and Abstract Book. p. 28. Abstract 101.

  77. Grigorenko A.P., Molyaka Yu.K., Korovaitseva G.I., Rogaev E.I. 2002. Identification of a novel class of polytopic proteins with domains associated with probable proteinase activity. Biokhimiya. 67, 995–1005.

    Google Scholar 

  78. Weihofen A., Binns K., Lemberg M.K., et al. 2002. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science. 296, 2215–2218.

    Article  PubMed  CAS  Google Scholar 

  79. Grigorenko A.P., Moliaka Y.K., Soto M.C., et al. 2004. The Caenorhabditis elegans IMPAS gene, imp-2, is essential for development and is functionally distinct from related presenilins. Proc. Natl. Acad. Sci. USA. 101, 14955–14960.

    Article  PubMed  CAS  Google Scholar 

  80. Nicoll J.A., Wilkinson D., Holmes C., et al. 2003. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: A case report. Nature Med. 9, 448–452.

    Article  PubMed  CAS  Google Scholar 

  81. Siemers E.R., Quinn J.F., Kaye J., et al. 2006. Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology. 66, 602–604.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.P. Grigorenko, E.I. Rogaev, 2007, published in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 2, pp. 331–345.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorenko, A.P., Rogaev, E.I. Molecular basis of Alzheimer’s disease. Mol Biol 41, 294–307 (2007). https://doi.org/10.1134/S0026893307020100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893307020100

Key words

Navigation