Molecular Biology

, Volume 41, Issue 2, pp 278–293 | Cite as

Protein splicing

  • P. L. Starokadomskyy
RNA and Proteins


Protein splicing is a posttranslational process that results in excision of an internal protein region (intein) and ligation of its flanking sequences (exteins). As distinguished from other variants of protein processing, protein splicing does not require cofactors of enzymes. Protein splicing is catalyzed by an internal domain (so-called Hint domain) of the intein itself. The review considers the main regularities and molecular mechanisms of the process, as well as the functions of Hint domains in other protein families (Hh proteins, bacterial BIL domains, etc.). Studies of protein splicing are of importance from both theoretical and applied viewpoints. For instance, comparisons of the inteins found in different domains of life illustrate the role of horizontal transfer in intein spreading. A possible role of inteins in regulating several cell processes is discussed on the basis of recent data.

Key words

intein protein splicing Hint domain extein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kane P.M., Yamashiro C.T., Wolczyk D.F., Neff N., Goebl M., Stevens T.H. 1990. Protein splicing converts the yeast TFP1 gene product to the 69 kDA subunit of the vacuolar H+-adenosine triphosphatase. Science. 250, 651–657.PubMedCrossRefGoogle Scholar
  2. 2.
    Anraku Y., Mizutani R., Satow Y. 2005. Protein splicing: Its discovery and structural insight into novel chemical mechanisms. IUBMB Life. 57, 563–574.PubMedGoogle Scholar
  3. 3.
    Perler F., Davis E., Dean G., Gimble F., Jack W., Neff N., Noren C., Thorner J., Belfort M. 1994. Protein splicing elements: Inteins and exteins, a definition of terms, and recommended nomenclature. Nucleic Acids Res. 22, 1125–1127.PubMedCrossRefGoogle Scholar
  4. 4.
    Klabunde T., Sharma S., Telenti A., Jacobs W., Sacchettini J. 1998. Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nature Struct. Biol. 5, 31–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Noren C., Wang J., Perler F. 2000. Dissecting the chemistry of protein splicing and its applications. Angew. Chem. Int. Ed. 39, 450–466.CrossRefGoogle Scholar
  6. 6.
    Perler F. 2005. Protein splicing mechanisms and applications. IUMBM Life. 57, 469–476.Google Scholar
  7. 7.
    Yang J., Meng Q., Liu X. 2004. Intein harbouring large tandem repeats in replicative DNA helicase of Trichodesmium erythraeum. Mol. Microbiol. 51, 1185–1192.PubMedCrossRefGoogle Scholar
  8. 8.
    Pietrokovski S. 1994. Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci. 3, 2340–2350.PubMedGoogle Scholar
  9. 9.
    Perler F. 2002. InBase, the intein database. Nucleic Acids Res. 30, 383–384.PubMedCrossRefGoogle Scholar
  10. 10.
    Perler F., Olsen G., Adam E. 1997. Compilation and analysis of intein sequences. Nucleic Acids Res. 25, 1087–1093.PubMedCrossRefGoogle Scholar
  11. 11.
    Pietrokovski S. 1998. Modular organization of inteins and C-terminal autocatalytic domains. Protein Sci. 7, 64–71.PubMedGoogle Scholar
  12. 12.
    Ding Y., Xu M., Ghosh I., Chen X., Ferrandon S., Lesage G., Rao Z. 2003. Crystal structure of a miniintein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing. J. Biol. Chem. 278, 3913–3914.Google Scholar
  13. 13.
    Matsumura H., Takahashi H., Inoue T., Yamamoto T., Hashimoto H., Nishioka M., Fujiwara S., Takagi M., Imanaka T., Kai Y. 2006. Crystal structure of intein homing endonuclease II encoded in DNA polymerase gene from hyperthermophilic archaeon Thermococcus kodakaraensis strain KOD1. Proteins. 63, 711–715.PubMedCrossRefGoogle Scholar
  14. 14.
    Guhan N., Muniyappa K. 2003. Mycobacterium tuberculosis RecA intein, a LAGLIDADG homing endonuclease, displays Mn2+-and DNA-dependent ATPase activity. Nucleic Acids Res. 31, 4184–4191.PubMedCrossRefGoogle Scholar
  15. 15.
    Ghosh I., Sun L., Xu M. 2001. Zinc inhibition of protein trans-splicing and identification of regions essential for splicing and association of a split intein. J. Biol. Chem. 276, 24,051–24,058.Google Scholar
  16. 16.
    Choi J.J., Nam K.H., Min B., Kim S.J., Soll D., Kwon S.T. 2006. Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans. J. Mol. Biol. 356, 1093–1106.PubMedCrossRefGoogle Scholar
  17. 17.
    Clarke N. 1994. A proposed mechanism for the self-splicing of proteins. Proc. Natl. Acad. Sci. USA. 91, 11,084–11,088.Google Scholar
  18. 18.
    Shao Y., Xu M., Paulus H. 1996. Protein splicing: Evidence for an N-O acyl rearrangement as the initial step in the splicing process. Biochemistry. 35, 3810–3815.PubMedCrossRefGoogle Scholar
  19. 19.
    Mills K.V., Perler F.B. 2005. The mechanism of inteinmediated protein splicing: Variations on a theme. Protein Peptide Lett. 12, 751–755.CrossRefGoogle Scholar
  20. 20.
    Xu M.Q., Coimb D.G., Paulus H., Noren J.C., Shao Y., Perler F.B. 1994. Protein splicing: An analysis of the branched intermediate and its resolution by succnimide formation. EMBO J. 13, 5517–5522.PubMedGoogle Scholar
  21. 21.
    Sun P., Ye S., Ferrandon S., Evans T.C., Xu M.Q., Rao Z. 2005. Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing. J. Mol. Biol. 353, 1093–1105.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang S., Liu X. 1997. Identification of an unusual intein in chloroplast ClpP protease of Chlamydomonas eugametos. J. Biol. Chem. 272. 11,869–11,873.Google Scholar
  23. 23.
    Perler F.B. 1999. A natural example of protein trans-splicing. Trends Biochem. Sci. 24, 209–211.PubMedCrossRefGoogle Scholar
  24. 24.
    Khan M.S., Khalid A.M., Malik K.A. 2005. Intein-mediated protein trans-splicing and transgene containment in plastids. Trends Biotechnol. 23, 217–220.PubMedCrossRefGoogle Scholar
  25. 25.
    Flick K.E., Jurica M.S., Monnat R.J., Stoddard B.L. 1998. DNA binding and cleavage by the nuclear intronencoded homing endonuclease I-PpoI. Nature. 394, 96–101.PubMedCrossRefGoogle Scholar
  26. 26.
    Gimble F.S., Duan X., Hu D., Quiocho F.A. 1998. Identification of Lys-403 in the PI-SceI homing endonuclease as part of a symmetric catalytic center. J. Biol. Chem. 273, 30,524–30,529.CrossRefGoogle Scholar
  27. 27.
    Dalgaard J.Z., Klar A.J., Moser M., Holley W.R., Chatterjee A., Mian I.S. 1997. Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and indentification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res. 25, 4626–4638.PubMedCrossRefGoogle Scholar
  28. 28.
    Bakhrat A., Jurica M., Stoddard B., Raveh D. 2004. Homology modeling and nutational analysis of Ho endonuclease of yeast. Genetics. 166, 721–728.PubMedCrossRefGoogle Scholar
  29. 29.
    He Z., Crist M., Yen H., Duan X., Quiocho F.A., Gimble F.S. 1998. Amino acid residues in both the protein splicing and endonuclease domains of the PI-SceI intein mediate DNA binding. J. Biol. Chem. 273, 4607–4615.PubMedCrossRefGoogle Scholar
  30. 30.
    Lykke-Andersen J., Garrett R.A., Kjems J. 1996. Protein footprinting approach to mapping DNA binding sites of two archaeal homing enzymes: evidence for a two-domain protein structure. Nucleic Acids Res. 24, 3982–3989.PubMedCrossRefGoogle Scholar
  31. 31.
    Hu D., Crist M., Duan X., Quiocho F.A., Gimble F.S. 2000. Probing the structure of the PI-SceI-DNA complex by affinity cleavage and affinity photocrosslinking. J. Biol. Chem. 275, 2705–2712.PubMedCrossRefGoogle Scholar
  32. 32.
    Pietrokovski S. 2001. Intein spread and extinction in evolution. Trends Genet. 17, 465–472.PubMedCrossRefGoogle Scholar
  33. 33.
    Adam E., Perler F. 2002. Development of a positive genetic selection system for inhibition of protein splicing using mycobacterial inteins in Escherichia coli DNA gyrase subinit A. J. Mol. Microbiol. Biotechnol. 4, 479–487.PubMedGoogle Scholar
  34. 34.
    Hall T.M., Porter J.A., Young K.E., Koonin E.V., Beachy P.A., Leahy D.J. 1997. Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell. 91, 85–97.PubMedCrossRefGoogle Scholar
  35. 35.
    Porter J.A., Ekker S.C., Park W.J., von Kessler D.P., Young K.E., Chen C.H., Ma Y., Wood A.S., Cotter R.J., Koonin E.V., Beachy P.A. 1996. Hedgehog patterning activity: Role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell. 86, 21–34.PubMedCrossRefGoogle Scholar
  36. 36.
    Komori K., Fujita N., Ichiyanagi K., Shinagawa H., Morikawa K., Ishino Y. 1999. PI-PfuI and PI-PfuII, intein-coded homing endonucleases from Pyrococcus furiosus. Nucleic Acids Res. 27, 4167–4182.PubMedCrossRefGoogle Scholar
  37. 37.
    Butler M., Goodwin T., Poulter R. 2005. Two new fungal inteins. Yeast. 22, 493–501.PubMedCrossRefGoogle Scholar
  38. 38.
    Butler M.I., Gray J., Goodwin T.J., Poulter R.T. 2006. The distribution and evolutionary history of the PRP8 intein. BMC Evol. Biol. 6, 42.PubMedCrossRefGoogle Scholar
  39. 39.
    Bjornsdottir S.H., Blondal T., Hreggvidsson G.O., Eggertsson G., Petursdottir S., Hjorleifsdottir S., Thorbjarnardottir S.H., Kristjansson J.K. 2006. Rhodothermus marinus: Physiology and molecular biology. Extremophiles. 10, 1–16.PubMedCrossRefGoogle Scholar
  40. 40.
    Khan M.S., Khalid A.M., Malik K.A. 2005. Intein-mediated protein trans-splicing and transgene containment in plastids. Trends Biotechnol. 23, 217–220.PubMedCrossRefGoogle Scholar
  41. 41.
    Hertveldt K., Lavigne R., Pleteneva E., Sernova N., Kurochkina L., Korchevskii R., Robben J., Mesyanzhinov V., Krylov V.N., Volckaert G. 2005. Genome comparison of Pseudomonas aeruginosa large phages. J. Mol. Biol. 354, 536–545.PubMedGoogle Scholar
  42. 42.
    Nagasaki K., Shirai Y., Tomaru Y., Nishida K., Pietrokovski S. 2005. Algal viruses with distinct intraspecies host specificities include identical intein elements. Appl. Environ. Microbiol. 71, 3599–3607.PubMedCrossRefGoogle Scholar
  43. 43.
    Suhre K., Audic S., Claverie J.M. 2005. Mimivirus gene promoters exhibit an unprecedented conservation among all eukaryotes. Proc. Natl. Acad. Sci. USA. 102, 14689–14693.PubMedCrossRefGoogle Scholar
  44. 44.
    Ogata H., Raoult D., Claverie J.M. 2005. A new example of viral intein in Mimivirus. Virol. J. 2, 1–7.CrossRefGoogle Scholar
  45. 45.
    Gogarten J., Senejani A., Zhaxybayeva O., Olendzenski L., Hilario E. 2002. Inteins: Stcructure, function, and evolution. Annu. Rev. Microbiol. 56, 263–287.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu X., Yang J., Meng Q. 2003. Four Inteins and three group II introns encoded in a bacterial ribonucleotide reductase gene. J. Biol. Chem. 278, 46,826–46,831.Google Scholar
  47. 47.
    Paulus H. 2001. Inteins as enzymes. Bioorg. Chem. 29, 119–129.PubMedCrossRefGoogle Scholar
  48. 48.
    Paulus H. 2000. Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem. 69, 447–496.PubMedCrossRefGoogle Scholar
  49. 49.
    Ingham P.W., McMahon A.P. 2001. Hedgehog signaling in animal development: Paradigms and principles. Genes Devel. 15, 3059–3087.PubMedCrossRefGoogle Scholar
  50. 50.
    Roessler E., Belloni E., Gaudenz K., Vargas F., Scherer S.W., Tsui L.C., Muenke M. 1997. Mutations in the C-terminal domain of Sonic Hedgehog cause holoprosencephaly. Hum. Mol. Genet. 6, 1847–1853.PubMedCrossRefGoogle Scholar
  51. 51.
    Amitai G., Belenkiy O., Dassa B., Shainskaya A., Pietrokovski S. 2003. Distribution and function of new bacterial intein-like protein domains. Mol. Microbiol. 47, 61–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Dassa B., Haviv H., Amitai G., Pietrokovski S., 2004. Protein splicing and auto-cleavage of bacterial inteinlike domain lacking a C′-flanking nucleophilic residue. J. Biol. Chem. 30, 32001–32007.CrossRefGoogle Scholar
  53. 53.
    Parkhill J., Achtman M., James K.D., Bentley S.D., Churcher C., Klee S.R. 2000. Complete DNA sequence of a serogroup A strain of Neisseria meningitides Z2491. Nature. 404, 502–506.PubMedCrossRefGoogle Scholar
  54. 54.
    Salanoubat M., Genin S., Artiguenave F., Gouzy J., Mangenot S., Arlat M. 2001. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature. 415, 497–502.CrossRefGoogle Scholar
  55. 55.
    Albert A., Dhanaraj V., Genschel U., Khan G., Ramjee M.K., Pulido R., Sibanda B.L., von Delft F., Witty M., Blundell T.L., Smith A.G., Abell C. 1998. Crystal structure of aspartate decarboxylase at 2.2 Å resolution provides evidence for an ester in protein self-processing. Nature Struct. Biol. 5, 289–293.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • P. L. Starokadomskyy
    • 1
  1. 1.Institute of Molecular Biology and GeneticsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations