Skip to main content
Log in

Structured proteins and proteins with intrinsic disorder

  • RNA and Proteins
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Until recently, the point of view that the unique tertiary structure is necessary for protein function has prevailed. However, recent data have demonstrated that many cell proteins do not possess such structure in isolation, although displaying a distinct function under physiological conditions. These proteins were named the naturally, or intrinsically, disordered proteins. The fraction of intrinsically disordered regions in such proteins may vary from several amino acid residues to a completely unordered sequence of several tens or even several hundreds of residues. The main distinction of these proteins from structured (globular) proteins is that they have no unique tertiary structure in isolation and acquire it only upon interaction with their partners. The conformation of these proteins in a complex is determined not only by their own amino acid sequence (as is typical of structured, or globular, proteins) but also by the interacting partner. This review discusses the structure-function relationships in structured and intrinsically disordered proteins. The intricateness of this problem and the possible ways to solve it are illustrated by the example of the EF1A elongation factor family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunker A.K., Lawson D.J., et al. 2001. Intrinsically disordered protein. J. Mol. Graphics Modelling. 19, 26–59.

    Article  CAS  Google Scholar 

  2. Uversky V.N., Gillspie J.R., Fink A.L. 2000. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins. 41, 415–427.

    Article  PubMed  CAS  Google Scholar 

  3. Jeffry C.J. 1999. Moonlighting proteins. Trends Biochem. Sci. 24, 8–11.

    Article  Google Scholar 

  4. Wright P.E., Dyson H.J. 1999. Intrinsically unstructured proteins: Reassembling the protein structure-function paradigm. J. Mol. Biol. 293, 321–331.

    Article  PubMed  CAS  Google Scholar 

  5. Bogatyreva N.S., Finkelstein A.V., Galzitskaya O.V. 2006. Trend of amino acid compositions of different taxa. J. Bioinf. Comput. Biol. 4, 597–608.

    Article  CAS  Google Scholar 

  6. Lemieux U.R., Spohr U. 1994. How Emil Fisher was led to the lock and key concept for enzyme specificity. Adv. Carbohydrate Chem. Biochem. 50, 1–20.

    CAS  Google Scholar 

  7. Mirsky A.E., Pauling L. 1936. On the structure of native, denaturated, and coagulated proteins. Proc. Natl. Acad. Sci. USA. 22, 439–447.

    Article  PubMed  CAS  Google Scholar 

  8. Edsall J.T. 1952. Some comments on proteins and protein structure. Proc. R. Soc. London B. 147, 97–113.

    Google Scholar 

  9. Anfinsen C.B. 1973. Principles that govern the folding of protein chains. Science. 181, 223–230.

    Article  PubMed  CAS  Google Scholar 

  10. Kendrew J., Dickerson R., Standberg B., Hart R., Davies D., Philips P., Shore V. 1960. Structure of myoglobin. Nature. 185, 422–428.

    Article  CAS  Google Scholar 

  11. Perutz M., Rossmann M., Gullis A., Muirhead H., Will G., North A., 1960. Structure of haemoglobin. Nature. 185, 416–421.

    Article  CAS  Google Scholar 

  12. Karush F. 1950. Heterogenity of the binding sites of bovine serum albumin. J. Am. Chem. Soc. 72, 2705–2713.

    Article  CAS  Google Scholar 

  13. Koshland D.E., Jr. 1958. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA. 44, 98–104.

    Article  PubMed  CAS  Google Scholar 

  14. Koshland D.E., Jr. 1994. The key-lock theory and the induced fit theory. Angew. Chem. Int. Ed. Engl. 33, 2375–2378.

    Article  Google Scholar 

  15. Blake C.C., Koenig D.F., et al. 1965. Structure of hen egg-white lysozyme: A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature. 206, 757–761.

    Article  PubMed  CAS  Google Scholar 

  16. McDonald R.C., Steitz T.A., Engelman D.M. 1979. Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphate. Biochemistry. 18, 338–342.

    Article  PubMed  CAS  Google Scholar 

  17. Kjeldgaard M., Nissen P., Thirup S., Nyborg J. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure. 1, 35–50.

    Article  PubMed  CAS  Google Scholar 

  18. Calmettes P., Roux B., Durand D., Desmadril M., Smith J.C. 1993. Configurational distribution of denaturated phosphoglycerate kinase. J. Mol. Biol. 231, 840–848.

    Article  PubMed  CAS  Google Scholar 

  19. Hinck A.P., Markus M.A., Huang S., Grzesiek S., Kustonovich I., Draper D.E., Torchia D.A. 1997. The RNA binding domain of ribosomal protein L11: Three-dimensional structure of the RNA-bound form of the protein and its interaction with 23S rRNA. J. Mol. Biol. 274, 101–113.

    Article  PubMed  CAS  Google Scholar 

  20. Kissinger C.R., Parge H.E., et al. 1995. Crystal structure of human calcineurin and the human FKBP12-FK506-cacineurin complex. Nature. 378, 641–644.

    Article  PubMed  CAS  Google Scholar 

  21. Wutrich K. 1998. The second millennium—in to the third millennium. Nature Struct. Biol. 5, 492–495.

    Article  Google Scholar 

  22. Lee L., Stollar E., et al. 2001. Expression of the Oct-1 transcription factor and characterization of its interactions with the Bob1 coactivator. Biochemistry. 40, 6580–6588.

    Article  PubMed  CAS  Google Scholar 

  23. Tanford C., Kawahara K., Lapanije S. 1967. Proteins as a random coils: Intrinsic viscosity and sedimentation coefficients in concentrated guanidine hydrochloride. J. Am. Chem. Soc. 89, 729–734.

    Article  CAS  Google Scholar 

  24. House-Pompeo K., Xu Y., Joh D., Speziale M. 1996. Conformational changes in the fibronectin binding MSCRAMMs are induced by ligand binding. J. Biol. Chem. 271, 1379–1384.

    Article  PubMed  CAS  Google Scholar 

  25. Dyson H.J., Wright P.E. 2003. Intrinsically unstructured proteins and their function. Mol. Cell Biol. 6, 197–205.

    Google Scholar 

  26. Demarest S.J., Martinez-Yamout M., et al. 2002. Mutual synergetic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature. 415, 549–553.

    Article  PubMed  CAS  Google Scholar 

  27. Tompa P. 2002. Intrinsically unstructed proteins. Trends Biochem. Sci. 27, 527–533.

    Article  PubMed  CAS  Google Scholar 

  28. Vucetic S., Brown J.C., Dunker A.K., Obradovic Z. 2003. Flavors of protein disorder. Proteins. 52, 573–584.

    Article  PubMed  CAS  Google Scholar 

  29. Oldfield C.J., Cheng Y., Cortese M.S., Brown C.J., Uverskiy V.N., Dunker A.K. 2005. Comparing and combining of mostly disordered proteins. Biochemistry. 44, 1989–2000.

    Article  PubMed  CAS  Google Scholar 

  30. Galzitskaya O.V., Garbuzynskiy A.S., Lobanov M.Yu. 2006. Prediction of natively unfolded regions of the protein chain. Mol. Biol. 40, 341–348.

    Google Scholar 

  31. Frankel A.D., Kim P.S. 1991. Molecular structure of transcription factors: Implication for gene regulation. Cell. 65, 717–719.

    Article  PubMed  CAS  Google Scholar 

  32. Negrutskii B.S., Deutsher M.P. 1991. Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc. Natl. Acad. Sci. USA. 88, 4991–4995.

    Article  PubMed  CAS  Google Scholar 

  33. Dunker A.K., Brown C.J., Lawson J.D., Lakoucheva L.M., Obradovic Z. 2002. Intrinsic disorder in cell-signalling and cancer-associated proteins. Biochemistry. 41, 6573–6582.

    Article  PubMed  CAS  Google Scholar 

  34. Rechsteiner M., Rogers S.W. 1996. PEST sequence and regulation for proteolysis. Trends Biochem. Sci. 21, 267–271.

    Article  PubMed  CAS  Google Scholar 

  35. Schuster S.C., Khan S., 1994. The bacterial flagellar motor. Ann. Rev. Biophys. Biomol. Struct. 23, 509–539.

    Article  CAS  Google Scholar 

  36. Daughdrill G.W., Chadsey M.S., Karlinsey J.E., Hughes K.T., Dahlquist F.W. 1997. The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, sigma. Nature Struct. Biol. 4, 285–291.

    Article  PubMed  CAS  Google Scholar 

  37. Kostyukova A.S., Pyatibratov M.G., Filimonov V.V., Fedorov O.V. 1988. Flagellin parts acquiring a regular structure during polymerization are disposed on the molecule ends. FEBS Lett. 241, 141–144.

    Article  PubMed  CAS  Google Scholar 

  38. Piaxco K.W., Gros M. 1997. The importance of being unfolded. Nature. 386, 657–658.

    Article  Google Scholar 

  39. Lakoucheva L.M., Brown C.J., Lawson D.J., Obradovic Z., Dunker A.K. 2002. Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323, 573–584.

    Article  Google Scholar 

  40. Shiemaker B.A., Portman J.J., Wolynes G. 2000. Speeding molecular recognition by using the foldoing funell: The fly-casting mechanism. Proc. Natl. Acad. Sci. USA. 97, 8868–8873.

    Article  Google Scholar 

  41. Shulz G.E. 1979. Nucleotide binding proteins. In: Molecular Mechanism of Biological Recognition. Ed. Balaban N. N.Y.: Elsevier/North Holland Biomedical Press, 74–94.

    Google Scholar 

  42. Kriwacki R.W., Hengst. L., Tennant L., Reed S.I., Wright P.E. 1996. Structural studies of p21 Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: Conformatopnal disorder mediates binding diversity. Proc. Natl. Acad. Sci. USA, 93, 11504–11509.

    Article  PubMed  CAS  Google Scholar 

  43. Gunasekaran K., Tsai Ch.-J., Kumar S., Zanuy D., Nussinov R. 2003. Extended disordered proteins: Targeting function with less scaffold. Trends Biochem. Sci. 28, 81–85.

    Article  PubMed  CAS  Google Scholar 

  44. Subramanian A.R. 1983. Structure and functions of ribosomal protein S1. Prog. Nucl. Acids Res. Mol. Biol. 28, 101–142.

    CAS  Google Scholar 

  45. Laughrea M., Moore P.B. 1977. Physical properties of ribosomal protein S1 and its interaction with the 30S ribosomal subunit of Escherichia coli. J. Mol. Biol. 112, 399–421.

    Article  PubMed  CAS  Google Scholar 

  46. Berestovskaya N.V., Vasiliev V.D., Volkov A.A., Chetverin A.B. 1988. Electron microscopy study of Qβ replicase. FEBS Lett. 228, 263–267.

    Article  CAS  Google Scholar 

  47. Wower I.K., Zwieb C.W., Guven S.A., Wower J. 2000. Binding and crosslinking of tmRNA to ribosomal protein S1, on and off the Escherichia coli ribosome. EMBO J. 19, 6612–6621.

    Article  PubMed  CAS  Google Scholar 

  48. Budkevich T.V., Timchenko A.A., Tiktopulo E.I., Negrutskii B.S., Shalak V.F., Petrushenko Z.M., Aksenov V.L., Willumeit R., Kohlbrecher J., Serdyuk I.N., El’skaya A.V. 2002. Extended conformation of mamalian translation elongation factor 1A in solution. Biochemistry. 41, 15342–15349.

    Article  PubMed  CAS  Google Scholar 

  49. Kjeldgard M., Nyborg J. 1992. Refined structure of elongation factor EF-Tu from Escherichia coli. J. Mol. Biol. 223, 721–742.

    Article  Google Scholar 

  50. Song H., Parsons M.R., Rowsell S., Leonard G., Phillips S.E.V. 1999. Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 Å resolution. J. Mol. Biol. 285, 1245–1256.

    Article  PubMed  CAS  Google Scholar 

  51. Reshetnikova L.S., Reiser C.O., Schrimer N.K., Bertchold H., Storm R., Heilgenfeld R., Sprinzl M. 1991. Crystal of intact elongation factor Tu from Thermus thermophilus diffracting to high resolution. J. Mol. Biol. 221, 375–377.

    Article  PubMed  CAS  Google Scholar 

  52. Kjeldgard M., Nissen P., Thirup S., Nyborg J. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure. 1, 35–50.

    Article  Google Scholar 

  53. Serdyuk I.N., Pavlov M.Yu., Rublevskaya I.N., Zaccai G., Libermann R. 1994. The triple isotopic substitution method in small angle neutron scattering: Application to the study of the ternary complex EF-Tu*GTP*aminoacyl-tRNA. Biophys. Chem. 53, 123–130.

    Article  PubMed  CAS  Google Scholar 

  54. Vitagliano L., Masullo M., Sica F., Zagari A., Bocchini V. 2001 The crystal structure of Sulfolobus solfataricus elongation factor 1α in the complex with GDP reveals novel features in nucleotide binding and exchange. EMBO J. 20, 5305–5311.

    Article  PubMed  CAS  Google Scholar 

  55. Bertold H., Reshetnikova L., Reiser C.O.A., Schirmer N.K., Sprinzl M., Hilgenfeld R. 1993. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature. 365, 126–132.

    Article  Google Scholar 

  56. Andersen G.R., Pedersen L., Valente L., Chatterjee I., Kinzy T.G., Kjeldgaard M., Nyborg J. 2000. Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Bα. Mol. Cell. 6, 1261–1266.

    Article  PubMed  CAS  Google Scholar 

  57. Ptitsyn O.B. 1995. Molten globule and protein folding. Adv. Prot. Chem. 47, 83–229.

    CAS  Google Scholar 

  58. Receveur-Brechot V., Bourhis J., Uversky V.N., Canard B., Longhi S. 2006. Assessing protein disorder and induced folding. Proteins. 62, 24–45.

    Article  PubMed  CAS  Google Scholar 

  59. Wuttke D., Foster M.P., Case D.A., Gottesfeld J.M., Wright P. 1997. Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: Determinants of affinity and sequence specificity. J. Mol. Biol. 273, 183–206.

    Article  PubMed  CAS  Google Scholar 

  60. Bruschweiler R., Liao X., Wright P.E. 1995. Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science. 268, 886–889.

    Article  PubMed  CAS  Google Scholar 

  61. Weikl T., Abelmann K., Buchner J. 1999. An unstructured C-terminal region of the Hsp90 co-chaperone p23 is important for its chaperone function. J. Mol. Biol. 293, 685–691.

    Article  PubMed  CAS  Google Scholar 

  62. Botuyan M.V., Mer G., Yi G.S., Koth C.M., Case D.A., Edwards A.M., Chazin W.J., Arrowsmith C.H. 2001. Solution structure and dynamics of yeast elongation C in complex with a von Hippel-Lindau peptide. J. Mol. Biol. 312, 177–186.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.N. Serdyuk, 2007, published in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 2, pp. 297–313.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serdyuk, I.N. Structured proteins and proteins with intrinsic disorder. Mol Biol 41, 262–277 (2007). https://doi.org/10.1134/S0026893307020082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893307020082

Key words

Navigation