Molecular Biology

, Volume 41, Issue 1, pp 70–76 | Cite as

Aberrant methylation of p16, HIC1, N33, and GSTP1 in tumor epithelium and tumor-associated cells in prostate cancer

  • T. V. Kekeeva
  • O. P. Popova
  • P. V. Shegai
  • B. Ya. Alekseev
  • Yu. Yu. Andreeva
  • D. V. Zaletaev
  • M. V. Nemtsova
Cell Molecular Biology


The methylation status of p16, HIC1, N33, and GSTP1, which are involved in prostate carcinogenesis, was studied in prostate tissue samples containing neoplasms. Malignant acini, prostatic intraepithelial neoplasia (PIN) and benign prostatic hyperplasia (BPH) foci, and stroma surrounding glandular structures of each type were detected in histological sections, using laser capture microdissection of prostate tissue. High levels of methylation were found in tumor epithelium and adjacent tumor-associated stromal cells. Epigenetic changes in the stroma are indicative of a major role of tumor microenvironment in cancer development and progression. The methylation status of p16, HIC1, N33, and GSTP1 was also assessed in prostate biopsy material and operative tumor samples without laser capture microdissection. The methylation frequencies of all genes in tumor samples were considerably lower than those in microdissected tumor samples (HIC1, 71% vs. 89%; p16, 22% vs. 78%; GSTP1, 32% vs. 100%; and N33, 20% vs. 33%, respectively). It was concluded that laser capture micro-dissection is required in molecular analysis of tumors of this type.

Key words

prostate cancer methylation microdissection tumor microenvironment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jemal A., Sieuel R., Ward E., et al. 2006. Cancer statistics. CA Cancer J. Clin. 56, 6–30.CrossRefGoogle Scholar
  2. 2.
    Hanson K., Imyanitov E. 2001. Epidemiology and biology of prostate cancer. Prakt. Onkol. 2, 3–7.Google Scholar
  3. 3.
    Jeronimo C., Henrique R., Hoque M. et al. 2004. A quantitative promoter methylation profile of prostate cancer. Clin. Cancer Res. 10, 8472–8478.PubMedCrossRefGoogle Scholar
  4. 4.
    Yegnasubramanian S., Kowalski J., Gonzalgo M., et al. 2004. Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res. 64, 1975–1986.PubMedCrossRefGoogle Scholar
  5. 5.
    Jeronimo C., Usadel H., Henrique R., et al. 2001. Quantitation of GSTP1 Methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J. Natl. Cancer Inst. 93, 1747–1752.PubMedCrossRefGoogle Scholar
  6. 6.
    Tokumaru Y., Harden S., Sun D., et al. 2004. Optimal use of a panel of methylation markers with GSTP1 hypermethylation in the diagnosis of prostate adenocarcinoma. Clin. Cancer Res. 10, 5518–5522.PubMedCrossRefGoogle Scholar
  7. 7.
    Lodygin D., Epanchintsev A., Menssen A., et al. 2005. Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 65, 4218–4227.PubMedCrossRefGoogle Scholar
  8. 8.
    Li L., Carroll P., Dahiya R. 2005. Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J. Natl. Cancer Inst. 97, 103–115.PubMedGoogle Scholar
  9. 9.
    Zaletaev D.V., Nemtsova M.V., Strelnikov V.V., et al. 2004. Diagnostics of epigenetic alterations in hereditary and oncological disorders. Mol. Biol. 38, 213–223.CrossRefGoogle Scholar
  10. 10.
    Hessels D., Rittenhouse H., Schalken J. 2005. Molecular diagnostics in prostate cancer. EAU Update Ser. 3, 200–213.CrossRefGoogle Scholar
  11. 11.
    Bhowmick N., Neilson E., Moses H. 2004. Stromal fibroblasts in cancer initiation and progression. Nature. 432, 332–337.PubMedCrossRefGoogle Scholar
  12. 12.
    Peterson O. 2003. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol. 162, 391–402.Google Scholar
  13. 13.
    Kurose K. Gilley K., Matsumoto S., et al. 2002. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nature Genet. 32, 355–357.PubMedCrossRefGoogle Scholar
  14. 14.
    Hanson J., Gillespie J., Grover A. at al. 2006. Gene promoter methylation in prostate tumor-associated stromal cells. J. Natl. Cancer Inst. 98, 255–261.PubMedCrossRefGoogle Scholar
  15. 15.
    Hu M., Yao J., Cai L., et al. 2005. Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genet. 37, 899–905.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakayama I., Bennett C., Hicks J., et al. 2003. Hypermethylation of the human glutation S-transferase-π gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epitelium of the prostate. Am. J. Pathol. 163, 923–933.PubMedGoogle Scholar
  17. 17.
    Zemlyakova V.V., Zhevlova, A.I., Strelnikov, V.V., et al. 2003. Abnormal methylation of several tumor suppressor genes in sporadic breast cancer. Mol. Biol. 37, 696–703Google Scholar
  18. 18.
    Moinfar F., Man Y., Arnould L., et al. 2000. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: Implications for tumorigenesis. Cancer Res. 60, 2562–2566.PubMedGoogle Scholar
  19. 19.
    Kekeeva T.V., Zhevlova A.I., Podistov Yu.I., et al. 2006. Aberrant methylation of tumor suppressor genes and allelic imbalance in cervical intraepithelial neoplasia. Mol. Biol. 40, 224–230.CrossRefGoogle Scholar
  20. 20.
    Lee S., Lee H., Kim J., et al. 2003. Abberant CpG island hypermethylation along multistep hepatocarcinogenesis. Am. J. Pathol. 163, 1371–1378.PubMedGoogle Scholar
  21. 21.
    Zochbauer-Muller S., Fong K., Virmani A., et al. 2001. Abberant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 61, 249–255.PubMedGoogle Scholar
  22. 22.
    Ehrlich M. 2002. DNA methylation in cancer: Too much, but also too little. Oncogene. 21, 5400–5413.PubMedCrossRefGoogle Scholar
  23. 23.
    Ushijima T., Okochi-Takada E. 2005. Aberrant methylations in cancer cells: Where do they come from? Cancer Sci. 96, 206–211.PubMedCrossRefGoogle Scholar
  24. 24.
    Matsuyama H., Pan Y., Oba K., et al. 2001. Deletions on chromosome 8p22 may predict disease progression as well as pathological staging in prostate cancer. Clin. Cancer Res. 7, 3139–3143.PubMedGoogle Scholar
  25. 25.
    Knobloch R., Konrad L., Barth P., et al. 2004. Genetic pathways and new progression markers for prostate cancer suggested by microsatellite allelotyping. Clin. Cancer Res. 10, 1064–1073.CrossRefGoogle Scholar
  26. 26.
    Haqqman M., Manoska J., Woino K., Oesterling J. 1997. The relationship between prostate intraepithelial neoplasia (PIN) and prostate cancer. J. Urol. 158, 12–22.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • T. V. Kekeeva
    • 1
    • 2
  • O. P. Popova
    • 2
  • P. V. Shegai
    • 3
  • B. Ya. Alekseev
    • 3
  • Yu. Yu. Andreeva
    • 3
  • D. V. Zaletaev
    • 1
    • 2
  • M. V. Nemtsova
    • 1
    • 2
  1. 1.Medical Genetic Research CenterRussian Academy of Medical SciencesMoscowRussia
  2. 2.Institute of Molecular MedicineSechenov Moscow Medical Academy, Ministry of Health and Social Development of the Russian FederationMoscowRussia
  3. 3.Herzen Oncological Research InstituteMoscowRussia

Personalised recommendations