Advertisement

Molecular Biology

, Volume 40, Issue 5, pp 758–763 | Cite as

Phenotypic expression of epigenetic determinant [ISP +] in Saccharomyces cerevisiae depends on the combination of sup35 and sup45 mutations

  • A. Yu. Aksenova
  • K. V. Volkov
  • N. S. Rovinsky
  • A. V. Svitin
  • L. N. Mironova
Genomics. Transcriptomics. Proteomics

Abstract

Translation fidelity in Saccharomyces yeasts is determined by genetic and epigenetic (prion) factors. A study was made of S. cerevisiae strains containing the nonchromosomal determinant [ISP +], described earlier. Some of its properties suggest that [ISP +] is a prion. [ISP +] is expressed phenotypically as an antisuppressor of two sup35 mutations and can be cured with guanidine chloride (GuHCl). It was shown that sup35 mutants containing [ISP +] carried additional sup45 mutations. These mutations caused amino acid substitutions in different regions of translation termination factor eRF1, encoded by SUP45. Strains bearing the sup35-25 mutation contained the sup45 mutation that caused amino acid substitution at position 400 of eRF1; strains bearing sup35-10 contained the mutation that altered eRF1 at position 75. Thus, the antisuppressor phenotype of the [ISP +] strains proved to depend on the interaction of sup35 and sup45 mutations, as well as on the GuHCl-curable epigenetic determinant.

Key words

epigenetic inheritance yeast prions translation fidelity SUP45 SUP35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murgola E.J. 1985. tRNA, suppression, and the code. Annu. Rev. Genet. 19, 57–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Beier H., Grimm M. 2001. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res. 29, 4767–4782.PubMedCrossRefGoogle Scholar
  3. 3.
    Inge-Vechtomov S., Zhouravleva G., Philippe M. 2003. Eukaryotic release factors (eRFs) history. Biol. Cell. 95, 195–209.PubMedCrossRefGoogle Scholar
  4. 4.
    Kisselev L., Ehrenberg M., Frolova L. 2003. Termination of translation: Interplay of mRNA, rRNAs and release factors? EMBO J. 22, 175–182.PubMedCrossRefGoogle Scholar
  5. 5.
    Liebman S.W., Derkatch I.L. 1999. The yeast [PSI +] prion: Making sense of nonsense. J. Biol. Chem. 274, 1181–1184.PubMedCrossRefGoogle Scholar
  6. 6.
    Serio T.R., Lindquist S.L. 2001. The yeast prion [PSI +]: Molecular insights and functional consequences. Adv. Protein Chem. 59, 391–412.PubMedCrossRefGoogle Scholar
  7. 7.
    Ter-Avanesyan M.D., Paushkin S.V., Kushnirov V.V., Kochneva-Pervukhova N.V. 1998. Molecular mechanisms of “protein heredity”: Yeast prions. Mol. Biol. 32, 32–42.Google Scholar
  8. 8.
    Derkatch I.L., Bradley M.E., Hong J.Y., Liebman S.W. 2001. Prions affect the appearance of other prions: The story of [PIN +]. Cell. 106, 171–182.PubMedCrossRefGoogle Scholar
  9. 9.
    Derkatch I.L., Uptain S.M., Outeiro T.F., Krishnan R., Lindquist S.L., Liebman S.W. 2004. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI +] prion in yeast and aggregation of Sup35 in vitro. Proc. Natl. Acad. Sci. USA. 101, 12,934–12,939.CrossRefGoogle Scholar
  10. 10.
    Volkov K.V., Aksenova A.Y., Soom M.J., Osipov K.V., Svitin A.V., Kurischko C., Shkundina I.S., Ter-Avanesyan M.D., Inge-Vechtomov S.G., Mironova L.N. 2002. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics. 160, 25–36.PubMedGoogle Scholar
  11. 11.
    Rose M.D., Novick P., Thomas J.H., Botstein D., Fink G.R. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene. 60, 237–243.PubMedCrossRefGoogle Scholar
  12. 12.
    Le Goff C., Zemlyanko O., Moskalenko S., Berkova N., Inge-Vechtomov S., Philippe M., Zhouravleva G. 2002. Mouse GSPT2, but not GSPT1, can substitute for yeast eRF3 in vivo. Genes Cells. 7, 1043–1057.PubMedCrossRefGoogle Scholar
  13. 13.
    Zakharov I.A., Kozhin S.A., Kozhina T.N., Fedorova I.V. 1984. Sbornik metodik po genetike drozhzhei-sakharomitsetov (Methods in Saccharomyces Yeast Genetics). Leningrad: Nauka.Google Scholar
  14. 14.
    Sherman F., Fink G.R. 1986. Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.Google Scholar
  15. 15.
    Kaiser C., Michaelis S., Mitchell A. 1994. Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.Google Scholar
  16. 16.
    Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.Google Scholar
  17. 17.
    DNA Cloning: A Practical Approach. 1985. Glover D.M., Ed. Oxford: IRL. Translated under the title Klonirovanie DNK: Metody, Moscow: Mir, pp. 285–313.Google Scholar
  18. 18.
    Moskalenko S.E., Chabelskaya S.V., Inge-Vechtomov S.G., Philippe M., Zhouravleva G.A. 2003. Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae. BMC Mol. Biol. 4, 2.PubMedCrossRefGoogle Scholar
  19. 19.
    Wakem L.P., Sherman F. 1990. Isolation and characterization of omnipotent suppressors in the yeast Saccharomyces cerevisiae. Genetics. 124, 515–522.PubMedGoogle Scholar
  20. 20.
    Moskalenko S.E., Zhouravleva G.A., Soom M.J., Shabel’skaya S.V., Volkov K.V., Zemlyanko O.M., Philippe M., Mironova L.N., Inge-Vechtomov S.G. 2004. Characterization of missense mutations in the Saccaromyces cerevisiae SUP45 gene encoding translation termination factor tRF1. Genetika. 40, 599–606.PubMedGoogle Scholar
  21. 21.
    Inge-Vechtomov S.G., Andrianova V.M. 1970. Recessive super-suppressors in yeasts. Genetika. 6, 103–115.Google Scholar
  22. 22.
    Ito K., Ebihara K., Nakamura Y. 1998. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA. 4, 958–972.PubMedCrossRefGoogle Scholar
  23. 23.
    Frolova L., Seit-Nebi A., Kisselev L. 2002. Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. RNA. 8, 129–136.PubMedCrossRefGoogle Scholar
  24. 24.
    Liang H., Wong J.Y., Bao Q., Cavalcanti A.R., Landweber L.F. 2005. Decoding the decoding region: Analysis of eukaryotic release factor (eRF1) stop codon-binding residues. J. Mol. Evol. 60, 337–344.PubMedCrossRefGoogle Scholar
  25. 25.
    Mironova L.N., Samsonova M.G., Zhouravleva G.A., Kulikov V.N., Soom M.J. 1995. Reversions to respiratory competence of omnipotent sup45 suppressor mutants may be caused by secondary sup45 mutations. Curr. Genet. 27, 195–200.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. Yu. Aksenova
    • 1
  • K. V. Volkov
    • 1
  • N. S. Rovinsky
    • 1
  • A. V. Svitin
    • 1
  • L. N. Mironova
    • 1
  1. 1.Department of Genetics and BreedingSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations