Skip to main content
Log in

Specificity of DNA cleavage by ultrasound

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Cleavage of double-stranded DNA fragments with known nucleotide sequences upon sonication at 22 and 44 kHz was studied by PAGE. The cleavage rate was shown to depend on the fragment size, pH, ionic strength, and temperature. Double-strand breaks occurred preferentially in 5′-CpG-3′ dinucleotides. The strand was broken between C and G so that the phosphate group was at the 5′ side of G in the products. The cleavage rate proved to depend on the sequences flanking the cleavage site. The character of cleavage changed in the presence of Pt-bis-netropsin, a sequence-specific ligand that alters the local conformation of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doty P., McGill B.B., Rice S.A. 1958. The properties of sonic fragments of deoxyribosenucleic acid. Proc. Natl. Acad. Sci. USA. 44, 432–438.

    PubMed  CAS  Google Scholar 

  2. Davison P.F., Freifelder D. 1962. Studies on the sonic degradation of deoxyribonucleic acid. Biophys. J. 2, 235–247.

    PubMed  Google Scholar 

  3. Randolph M.L., Setlow J.K. 1972. Mechanism of inactivation of Haemophilus influenzae transforming deoxyribonucleic acid by sonic radiation. J. Bacteriol. 111, 186–191.

    PubMed  CAS  Google Scholar 

  4. Mann T.L., Krull U.J. 2004. The application of ultrasound as a rapid method to provide DNA fragments suitable for detection by DNA biosensors. Biosens. Bioelectronics. 20, 945–955.

    CAS  Google Scholar 

  5. Miller D.L., Thomas R.M. 1996. The role of cavitation in the induction of cellular DNA damage by ultrasound and lithotripter shock waves in vitro. Ultrasound Med. Biol. 22, 681–687.

    PubMed  CAS  Google Scholar 

  6. Fuciarelli A.F., Sisk E.C., Thomas R.M., Miller D.L. 1995. Induction of base damage in DNA solutions by ultrasonic cavitation. Free Rad. Biol. Med. 18, 231–238.

    Article  PubMed  CAS  Google Scholar 

  7. Margulis M.A. 1984. Osnovy zvukokhimii (Fundamentals of Acoustic Chemistry). Moscow: Khimiya.

    Google Scholar 

  8. Suslick K.S., Price G.J. 1999. Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29, 295–326.

    Article  CAS  Google Scholar 

  9. Grokhovsky S.L., Surovaya A.N., Burckhardt G., Pismensky V.F., Chernov B.K., Zimmer Ch., Gursky G.V. 1998. DNA sequence recognition by bis-linked netropsin and distamycin derivatives. FEBS Lett. 439, 346–350.

    Article  PubMed  CAS  Google Scholar 

  10. Maniatis, T., Fritsch, E.F., Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab. Press.

    Google Scholar 

  11. Kraev A.S. 1988. A simple system for phage M13 cloning and DNA sequencing with the use of terminators. Mol. Biol. 22, 1164–1197.

    CAS  Google Scholar 

  12. Dickerson R.E., Drew H.R. 1981. Structure of a B-DNA dodecamer: 2. Influence of base sequence on helix structure. J. Mol. Biol. 149, 761–786.

    Article  PubMed  CAS  Google Scholar 

  13. Hyeon-Sook K., Crothers D.M. 1988. Calibration of DNA curvature and a unified description of sequence-directed bending. Proc. Natl. Acad. Sci. USA. 85, 1763–1767.

    Google Scholar 

  14. Sarai A., Mazur J., Nussinov R., Jernigan R.L. 1988. Origin of DNA helical structure and its sequence dependance. Biochemistry. 27, 8498–8502.

    Article  PubMed  CAS  Google Scholar 

  15. Chuprina V.P., Heinemann U., Nurislamov A.A., Zielenkiewicz P., Dickerson R.E., Saender W. 1991. Molecular dynamics simulation of the hydration shell of a B-DNA decamer reveals two main types of minor-groove hydration depending on groove width. Proc. Natl. Acad. Sci. USA. 88, 593–597.

    PubMed  CAS  Google Scholar 

  16. Zasedatelev A.S., Zhuze A.L., Zimmer K., Grokhovsky S.L., Tumanyan V.G., Gursky G.V., Gottikh B.P. 1976. A stereochemical model of the molecular mechanism of AT pair recognition upon distamycin A and netropsin binding to DNA. Dokl. Akad. Nauk SSSR. 231, 1006–1009.

    PubMed  CAS  Google Scholar 

  17. Gursky G.V., Zasedatelev A.S., Zhuze A.L., Khorlin A.A., Grokhovsky S.L., Streltsov S.A., Surovaya A.N., Nikitin S.M., Krylov A.S., Retchinsky V.O., Mikhailov M.V., Beabealashvili R.S., Gottich B.P. 1983. Synthetic sequence-specific ligands. Cold Spring Harbor Symp. Quant. Biol. 47, 367–378.

    PubMed  Google Scholar 

  18. Grokhovsky S.L., Zubarev V.E. 1991. Sequence-specific cleavage of double-stranded DNA caused by X-ray ionization of the platinum atom in the Pt-bis-netropsin-DNA complex. Nucleic Acids Res. 19, 257–264.

    PubMed  CAS  Google Scholar 

  19. Grokhovsky S.L., Gottikh B.P., Zhuze A.L. 1992. Ligands with affinity for certain DNA sequences: 9. Sythesis of netropsin and distamycin A analogs containing a sarcolysin residue or a platinum (II) atom. Bioorg. Khim. 18, 570–583.

    Google Scholar 

  20. Grokhovsky S.L., Nikolaev V.A., Zubarev V.E., Surovaya A.N., Zhuze A.L., Chernov B.L., Sidorova N.Yu., Zasedatelev A.S., Gursky G.V. 1992. Specific DNA cleavage by a netropsin analog containing the copper ion (II)-chelating Gly-Gly-His peptide. Mol. Biol. 26, 1274–1297.

    CAS  Google Scholar 

  21. Surovaya A.N., Grokhovsky S.L., Burkhardt H., Fritsche H., Zimmer K., Gursky G.V. 2002. Effect of local DNA conformation in bis-netropsin binding to DNA. Mol. Biol. 36, 901–911.

    Article  Google Scholar 

  22. Belikov S., Wieslander L. 1995. Express protocol for generating G + A sequencing ladders. Nuclei Acids Res. 23, 310.

    CAS  Google Scholar 

  23. Encina M.V., Lissi E., Sarasua M., Gargallo L., Radic D. 1980. Ultrasonic degradation of polyvinylpyrrolidone: Effect of peroxide linkages. J. Polym. Sci. Polym. Letter. 18, 757–760.

    CAS  Google Scholar 

  24. Karlin S., Campbell A.M., Mrazek J. 1998. Comparative DNA analysis across diverse genomes. Annu. Rev. Genet. 32, 185–225.

    Article  PubMed  CAS  Google Scholar 

  25. Doerfler W. 1983. DNA methylation and gene activity. Annu. Rev. Biochem. 52, 93–124.

    Article  PubMed  CAS  Google Scholar 

  26. Tazi J., Bird A. 1990. Alternative chromatin structure at CpG islands. Cell. 60, 909–920.

    Article  PubMed  CAS  Google Scholar 

  27. SantaLucia J., Jr. 1998. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA. 95, 1460–1465.

    Article  PubMed  CAS  Google Scholar 

  28. Davey C.S., Pennings S., Reilly C., Meehan R.R., Allan J. 2004. A determining influence for CpG dinucleotides on nucleosome positioning in vitro. Nucleic Acids Res. 32, 4322–4331.

    Article  PubMed  CAS  Google Scholar 

  29. Bustamante C., Smith S.B., Liphardt J., Smith D. 2000. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285.

    Article  PubMed  CAS  Google Scholar 

  30. Hagerman P.J. 1988. Flexibility of DNA. Annu. Rev. Biophys. Chem. 17, 265–286.

    Article  CAS  Google Scholar 

  31. Cloutier T.E., Widom J. 2004. Spontaneous sharp bending of double-stranded DNA. Mol. Cell. 14, 355–362.

    Article  PubMed  CAS  Google Scholar 

  32. Arai Y., Yasuda R., Akashi K., Harada Y., Miyata H., Kinosita K., Jr. 1999. Tying a molecular knot with optical tweezers. Nature. 399, 446–448.

    PubMed  CAS  Google Scholar 

  33. Wells R.D., Dere R.L., Hebert M., Napierala M., Son L.S. 2005. Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res. 33, 3785–3798.

    Article  PubMed  CAS  Google Scholar 

  34. Rich A., Zhang S. 2003. Z-DNA: The long road to biological function. Nat. Rev. Genet. 4, 566–572.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.L. Grokhovsky, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 2, pp. 317–325.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grokhovsky, S.L. Specificity of DNA cleavage by ultrasound. Mol Biol 40, 276–283 (2006). https://doi.org/10.1134/S0026893306020142

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306020142

Key words

Navigation