Skip to main content
Log in

Influence of individual domains of the translation termination factor eRF1 on induction of the GTPase activity of the translation termination factor eRF3

  • Molecular Mechanisms of Biological Processes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Translation termination in eukaryotes is governed by two proteins belonging to class 1 (eRF1) and class 2 (eRF3) polypeptide release factors. eRF3 catalyzes hydrolysis of GTP to yield GDP and Pi in the ribosome in the absence of mRNA, tRNA, aminoacyl-tRNA, and peptidyl-tRNA and requires eRF1 for this activity. It is known that eRF1 and eRF3 interact with each other via their C-terminal regions both in vitro and in vivo. eRF1 consists of three domains—N, M, and C. In this study we examined the influence of the individual domains of the human eRF1 on induction of the human eRF3 GTPase activity in the ribosome in vitro. It was shown that none of the N, M, C, and NM domains induces the eRF3 GTPase activity in the presence of ribosomes. The MC domain does induce the eRF3 GTPase activity, but four times less efficiently than full-length eRF1. Therefore, we assumed that the MC domain (and very likely the M domain) binds to the ribosome in the presence of eRF3. Based on these data and taking into account the data available in the literature, a conclusion was drawn that the N domain of eRF1 is not essential for eRF1-dependent induction of the eRF3 GTPase activity. A working hypothesis is formulated that the eRF3 GTPase activity in the ribosome during translation termination is associated with the intermolecular interactions of GTP/GDP, the GTPase center of the large (60S) subunit, the MC domain of eRF1, and the C-terminal region and GTP-binding motifs of eRF3 but without participation of the N-terminal region of eRF1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kisselev L.L., Ehrenberg M., Frolova L.Yu. 2003. Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J. 2, 175–182.

    Google Scholar 

  2. Nakamura Y., Ito K. 2003. Making sense of mimic in translation termination. Trends Biochem. Sci. 28, 99–105.

    Article  PubMed  CAS  Google Scholar 

  3. Poole E.S., Askarian-Amiri M.E., Major L.L., McCaughan K.K., Scarlett D.J., Wilson D.N., Tate W.P. 2003. Molecular mimicry in the decoding of translational stop signals. Prog. Nucleic Acids Res. Mol. Biol. 74, 83–121.

    CAS  Google Scholar 

  4. Song H., Mugnier P., Webb H.M., Evans D.R., Tuite M.F., Hemmings B.A., Barford D. 2000. The crystal structure of human eukaryotic release factors eRF1: Mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell. 100, 311–321.

    PubMed  CAS  Google Scholar 

  5. Bertram G., Bell H.A., Ritchie D.W., Fullerton G., Stansfield I. 2000. Terminating eukaryote translation: Domain 1 of release factor eRF1 functions in stop codon recognition. RNA. 6, 1236–1247.

    Article  PubMed  CAS  Google Scholar 

  6. Frolova L., Seit-Nebi A., Kisselev L. 2002. Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. RNA. 8, 129–136.

    Article  PubMed  CAS  Google Scholar 

  7. Seit-Nebi A., Frolova L., Kisselev L. 2002. Conversion of omnipotent translation termination factor eRF1 into ciliate-like UGA-only unipotent eRF1. EMBO Rep. 3, 881–886.

    Article  PubMed  CAS  Google Scholar 

  8. Ito K., Frolova L., Seit-Nebi A., Karamyshev A., Kisselev L., Nakamura Y. 2002. Omnipotent decoding potential resides in eukaryotic translation termination factor eRF1 of variant-code organisms and is modulated by the interactions of amino acid sequences within the domain 1. Proc. Natl. Acad. Sci. USA. 99, 8494–8499.

    PubMed  CAS  Google Scholar 

  9. Frolova L.Y., Tsivkovskii R.Y., Sivolobova G.F., Oparina N.Y., Serpinsky O.I., Blinov V.M., Tatkov S.I., Kisselev L.L. 1999. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA. 5, 1014–1020.

    Article  PubMed  CAS  Google Scholar 

  10. Seit-Nebi A., Frolova L., Justesen J., Kisselev L. 2001. Class-1 translation termination factors: Invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. Nucleic Acids Res. 29, 3982–3987.

    PubMed  CAS  Google Scholar 

  11. Zavialov A.V., Mora L., Buckingham R.H., Ehrenberg M. 2002. Release of peptide promoted by the GGQ-motif of class-1 release factors regulates the GTPase activity of RF3. Mol. Cell. 10, 789–798.

    Article  PubMed  CAS  Google Scholar 

  12. Mora L., Heurgue-Hamard V., Champ S., Ehrenberg M., Kisselev L.L., Buckingham R.H. 2003. The essential role of the invariant GGQ motif in the function and the stability in vivo of bacterial release factors RF1 and RF2. Mol. Microbiol. 1, 267–275.

    Google Scholar 

  13. Ito K., Ebihara K., Nakamura Y. 1998. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is primary binding site for eRF3 of fission yeast. RNA. 4, 958–972.

    Article  PubMed  CAS  Google Scholar 

  14. Merkulova T.I., Frolova L.Yu., Lazar M., Camonis J., Kisselev L. 1999. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett. 443, 41–47.

    Article  PubMed  CAS  Google Scholar 

  15. Ebihara K., Nakamura Y. 1999. C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids. RNA. 5, 739–750.

    Article  PubMed  CAS  Google Scholar 

  16. Eurwilaichitr L., Graves F.M., Stansfield I., Tuite M.F. 1999. The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol. Microbiol. 32, 485–496.

    Article  PubMed  CAS  Google Scholar 

  17. Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M. 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14, 4065–4072.

    PubMed  CAS  Google Scholar 

  18. Frolova L., Le Goff X., Zhouravleva G., Davydova E., Philippe M., Kisselev L. 1996. Eukaryotic polypeptide chain release factor eRF3 is an eRF1-and ribosome-dependent guanosine triphosphatase. RNA. 2, 334–341.

    PubMed  CAS  Google Scholar 

  19. Stansfield I., Jones K.M., Kushnirov V.V., Dagkesamanskaya A.R., Poznyakovski A.I., Paushkin S.V., Nierras C.R., Cox B.S., Ter-Avanesyan M.D., Tuite M.F. 1995. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 14, 4365–4373.

    PubMed  CAS  Google Scholar 

  20. Buckingham R., Grentzmann G., Kisselev L. 1997. Polypeptide chain release factors. Mol. Microbiol. 24, 449–456.

    Article  PubMed  CAS  Google Scholar 

  21. Frolova L.Y., Merkulova T.I., Kisselev L.L. 2000. Translation termination in eukaryotes: Polypeptide release factor eRF1 is composed of functionally and structurally distinct domains. RNA. 6, 381–390.

    Article  PubMed  CAS  Google Scholar 

  22. Kabcenell A.K., Goud B., Northup J.K., Novick P.J. 1990 Binding and hydrolysis of guanine nucleotides by Sec4p, a yeast protein involved in the regulation of vesicular traffic. J. Biol. Chem. 265, 9366–9372.

    PubMed  CAS  Google Scholar 

  23. Frolova L., Simonsen J., Merkulova T., Litvinov D., Martensen P., Rechinsky V., Camonis J., Kisselev L., Justesen J. 1998. Functional expression of eukaryotic polypeptide chain release factors 1 and 3 by means of baculovirus/insect cells and complex formation between the factors. Eur. J. Biochem. 256, 36–44.

    Article  PubMed  CAS  Google Scholar 

  24. Kisselev L.L., Oparina N.Yu., Frolova L.Yu. 2000. Class-1 polypeptide chain release factors are structurally and functionally similar to suppressor tRNAs and comprise different structural-functional families of prokaryotic/mitochondrial and eukaryotic/archaebacterial factors. Mol. Biol. 34, 427–441.

    Google Scholar 

  25. Yusupov M., Yusupova G.Z., Baucom A., Lieberman K., Earnest T.N., Cate J.H.D., Noller H.F. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science. 292, 883–896.

    Article  PubMed  CAS  Google Scholar 

  26. Ramakrishnan V. 2002. Ribosome structure and mechanism of translation. Cell. 108, 557–572.

    Article  PubMed  CAS  Google Scholar 

  27. Graifer D., Molotkov M., Styazhkina V., Demeshkina N., Bulygin K., Eremina A., Ivanov A., Laletina E., Ven’yaminova A., Karpova G. 2004. Variable and conserved elements of human ribosomes surrounding the mRNA at the decoding and upstream sites. Nucleic Acids Res. 32, 3282–3293.

    Article  PubMed  CAS  Google Scholar 

  28. Bulygin K., Chavatte L., Frolova L., Karpova G., Favre A. 2005. The first position of a codon placed in the A site of the human 80S ribosome contacts nucleotide C1696 of the 18S rRNA as well as proteins S2, S3, S3a, S30 and S15. Biochemistry. 44, 2153–2162.

    Article  PubMed  CAS  Google Scholar 

  29. Chavatte L., Frolova L., Laugaa P., Kisselev L., Favre A. 2003. Stop codons and UGG promote efficient binding of the human polypeptide release factor eRF1 to the eukaryotic ribosomal A site. J. Mol. Biol. 331, 745–758.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Dubovaya, P.M. Kolosov, E.Z. Alkalaeva, L.Yu. Frolova, L.L. Kisselev, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 2, pp. 310–316.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubovaya, V.I., Kolosov, P.M., Alkalaeva, E.Z. et al. Influence of individual domains of the translation termination factor eRF1 on induction of the GTPase activity of the translation termination factor eRF3. Mol Biol 40, 270–275 (2006). https://doi.org/10.1134/S0026893306020130

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306020130

Key words

Navigation