Skip to main content
Log in

Thermal denaturation of class 1 eukaryotic translation termination factor eRF1. Relationship between stability and functional activity of eRF1 mutants

  • Molecular Mechanisms of Biological Processes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) was used to study thermal denaturation of the human class 1 translation termination factor eRF1 and its mutants. Free energy changes caused by amino acid substitutions in the N domain were computed for eRF1. The melting of eRF1, consisting of three domains, proved to be cooperative. The thermostability of eRF1 was not affected by certain substitutions and was slightly increased by certain others. The corresponding residues were assumed to play no role in maintaining the eRF1 structure, which agreed with the published X-ray data. In these mutants (E55D, Y125F, N61S, E55R, E55A, N61S + S64D, C127A, and S64D), a selective loss of the capability to induce hydrolysis of peptidyl-tRNA in the ribosomal P site in the presence of a stop codon was not associated with destabilization of their spatial structure. Rather, the loss was due to local changes in the stereochemistry of the side groups of the corresponding residues in functionally important sites of the N domain. Two amino acid residues of the N domain, N129 and F131, proved to play an important role in the structural stability of eRF1 and to affect the selective recognition of mRNA stop codons in the ribosome. The recognition of the UAG and UAA stop codons in vitro was more tightly associated with the stability of the spatial structure of eRF1 as compared with that of the UGA stop codon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kisselev L.L., Ehrenberg M., Frolova L.Yu. 2003. Termination of translation: interplay of mRNA, rRNAs, and release factors. EMBO J. 22, 175–182.

    Article  CAS  PubMed  Google Scholar 

  2. Kisselev L.L. 2003. Class-1 translation termination factors are functional analogs of aminoacyl-tRNAs. Mol. Biol. 37, 931–943.

    Google Scholar 

  3. Nakamura Y., Ito K. 2003. Making sense of mimic in translation termination. Trends Biochem. Sci. 28, 99–105.

    Article  CAS  PubMed  Google Scholar 

  4. Inge-Vechtomov S, Zhouravleva G, Philippe M. 2003. Eukaryotic release factors (eRFs) history. Biol. Cell. 95(3–4), 195–209.

    CAS  PubMed  Google Scholar 

  5. Song H., Mugnier P., Das A.K., Webb H.M., Evans D.R., Tuite M.F., Hemmings B.A., Barford D. 2000. The crystal structure of human eukaryotic release factor eRF1—mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell. 100, 311–321.

    CAS  PubMed  Google Scholar 

  6. Bertram G., Bell H.A., Ritchie D.W., Fullerton G., Stansfield I. 2000. Terminating eukaryote translation: Domain 1 of release factor eRF1 functions in stop codon recognition. RNA. 6, 1236–1247.

    Article  CAS  PubMed  Google Scholar 

  7. Frolova L., Seit-Nebi A., Kisselev L. 2002. Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. RNA. 8, 129–136.

    Article  CAS  PubMed  Google Scholar 

  8. Ito K., Frolova L., Seit-Nebi A., Karamyshev A., Kisselev L., Nakamura Y. 2002. Omnipotent decoding potential resides in eukaryotic translation termination factor eRF1 of variant-code organisms and is modulated by the interactions of amino acid sequences within domain 1. Proc. Natl. Acad. Sci. USA. 99, 8494–8499.

    CAS  PubMed  Google Scholar 

  9. Seit-Nebi A., Frolova L., Kisselev L. 2002. Conversion of omnipotent translation termination factor eRF1 into ciliate-like UGA-only unipotent eRF1. EMBO Rep. 3, 881–886.

    Article  CAS  PubMed  Google Scholar 

  10. Frolova L.Y., Tsivkovskii R.Y., Sivolobova G.F., Oparina N.Y., Serpinsky O.I., Blinov V.M., Tatkov S.I., Kisselev L.L. 1999. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA. 5, 1014–1020.

    Article  CAS  PubMed  Google Scholar 

  11. Seit-Nebi A., Frolova L., Justesen J., Kisselev L. 2001. Class-1 translation termination factors: Invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. Nucleic Acids Res. 29, 3982–3987.

    CAS  PubMed  Google Scholar 

  12. Ito K., Ebihara K., Nakamura Y. 1998. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA. 4, 958–972.

    Article  CAS  PubMed  Google Scholar 

  13. Merkulova T.I., Frolova L.Y., Lazar M., Camonis J., Kisselev L.L. 1999. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett. 443, 41–47.

    Article  CAS  PubMed  Google Scholar 

  14. Ebihara K, Nakamura Y. 1999. C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids. RNA. 5, 739–750.

    Article  CAS  PubMed  Google Scholar 

  15. Chavatte L., Frolova L., Kisselev L., Favre A. 2001. The polypeptide chain release factor eRF1 specifically contacts the s(4)UGA stop codon located in the A site of eukaryotic ribosomes. Eur. J. Biochem. 268, 2896–2904.

    Article  CAS  PubMed  Google Scholar 

  16. Bulygin K.N., Repkova M.N., Ven’yaminova A.G., Graifer D.M., Karpova G.G., Frolova L.Yu., Kisselev L.L. 2002. Positioning of the mRNA stop signal with respect to polypeptide chain release factors and ribosomal proteins in 80S ribosomes. FEBS Lett. 514, 96–101.

    Article  CAS  PubMed  Google Scholar 

  17. Chavatte L., Seit-Nebi A., Dubovaya V., Favre A. 2002. The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRF1 in the ribosome. EMBO. 21, 5302–5311.

    CAS  Google Scholar 

  18. Chavatte L., Kervestin S., Favre A., Jean-Jean O. 2003. Stop codon selection in eukaryotic translation termination: Comparison of the discriminating potential between human and ciliate eRF1s. EMBO. 22, 1644–1653.

    CAS  Google Scholar 

  19. Bulygin K., Chavatte L., Frolova L., Karpova G., Favre A. 2005. The first position of a codon placed in the A site of the human 80S ribosome contacts nucleotide C1696 of the 18S rRNA as well as proteins S2, S3, S3a, S30, and S15. Biochemistry. 44, 2153–2162.

    Article  CAS  PubMed  Google Scholar 

  20. Privalov P.L., Potekhin S.A. 1986. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 131, 4–51.

    CAS  PubMed  Google Scholar 

  21. Lyubarev A.E., Kurganov B.I. 2000. Analysis of irreversible protein denaturation by the method of differential scanning calorimetry. Usp. Biol. Khim. 40, 43–84.

    CAS  Google Scholar 

  22. Ladbury J. E., Doyle M. L. 2004. Biocalorimetry 2: Applications Calorimetry in the Biological Sciences. Chicherster: Wiley & Sons.

    Google Scholar 

  23. Frolova L., Le Goff X., Rasmussen H.H., Cheperegin S., Drugeon G., Kress M., Arman I., Haenni A.L., Celis J.E., Philippe M., Justesen J., Kisselev L. 1994. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature. 372, 701–703.

    Article  CAS  PubMed  Google Scholar 

  24. Makhatadze G.I., Privalov P.L. 1990. Heat capacity of proteins: 1. Partial molar heat capacity of individual amino acid residues in aqueous solution: Hydration effect. J. Mol. Biol. 213, 375–384.

    CAS  PubMed  Google Scholar 

  25. Prokop M., Damborsky J., Koca J. 2000. In silico construction of protein mutants and prediction of their activities. Bioinformatics. 16, 845–846.

    Article  CAS  PubMed  Google Scholar 

  26. Capriotti E., Fariselli P., Casadio R. 2004. A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics. 20, 163–168.

    Article  Google Scholar 

  27. Chen Y.H., Yang J.T., Martinez H.M. 1972. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 11, 4120–4131.

    CAS  PubMed  Google Scholar 

  28. Kononenko A.V., Dembo K.A., Kisselev L.L., Volkov V.V. 2004. Molecular morphology of eukaryotic class-1 translation termination factor eRF1 in solution. Mol. Biol. 38, 303–311.

    Article  CAS  Google Scholar 

  29. Lyubarev A.E., Kurganov B.I. 1998. Modeling the process of irrevesible heat denaturation at variable temperature: 1. A model including two consecutive irreversible stages. Biokhimiya. 63, 434–440.

    CAS  Google Scholar 

  30. Kisselev L.L., Oparina N.Yu., Frolova L.Yu. 2000. Class-1 polypeptide chain release factors are structurally and functionally similar to suppressor tRNAs and comprise different structural-functional families of prokaryotic/mitochondrial and eukaryotic/archaebacterial factors. Mol. Biol. 34, 427–441.

    Google Scholar 

  31. Kolosov P., Frolova L., Seit-Nebi A., Dubovaya V., Kononenko A., Oparina N., Justesen J., Efimov A., Kisselev. L. 2005. Invariant amino acids essential for decoding function of polypeptide release factor eRF1. Nucleic Acids Res. 33, 6418–6425.

    Article  CAS  PubMed  Google Scholar 

  32. Weng Z., Delisi C., Vajda S. 1997. Empirical free energy calculation: Comparison to calorimetric data. Protein Sci. 6, 1976–1984.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Mitkevich, A.V. Kononenko, N.J. Oparina, P.M. Kolosov, A.A. Makarov, L.L. Kisselev, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 1, pp. 100–110.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitkevich, V.A., Kononenko, A.V., Oparina, N.J. et al. Thermal denaturation of class 1 eukaryotic translation termination factor eRF1. Relationship between stability and functional activity of eRF1 mutants. Mol Biol 40, 86–95 (2006). https://doi.org/10.1134/S0026893306010134

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306010134

Key words

Navigation