Skip to main content
Log in

Repetitive sequences of the tree shrew genome (Mammalia, Scandentia)

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Copies of two repetitive elements of the common tree shrew (Tupaia glis) genome were cloned and sequenced. The first element, Tu III, is a ∼260 bp long short interspersed element (SINE) with the 5′ end derived from glycine RNA. Tu III carries long polypurine-and polypyrimidine-rich tracts, which may contribute to the specific secondary structure of Tu III RNA. This SINE was also found in the genome of the smooth-tailed tree shrew of another genus (Dendrogale). Tu III appears to be confined to the order Scandentia since it was not found in the DNA of other tested mammals. The second element, Tu-SAT1, is a tandem repeat with a monomer length of 365 bp. Some properties of its nucleotide sequence suggest that Tu-SAT1 is a centromeric satellite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beridze T.G. 1982. Satellitnaya DNK (Sattelite DNA). Moscow: Nauka.

    Google Scholar 

  2. Willard H.F. 1990. Centromeres of mammalian chromosomes. Trends Genet. 6, 410–416.

    Article  CAS  PubMed  Google Scholar 

  3. Elder J.F., Jr., Turner B.J. 1995. Concerted evolution of repetitive DNA sequences in eukaryotes. Quant. Rev. Biol. 70, 297–320.

    CAS  Google Scholar 

  4. Liao D. 1999. Concerted evolution: Molecular mechanism and biological implications. Am. J. Hum. Genet. 64, 24–30.

    Article  CAS  PubMed  Google Scholar 

  5. Henikoff S., Ahmad K., Malik H.S. 2001. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 293, 1098–1102.

    Article  CAS  PubMed  Google Scholar 

  6. Ugarkovic D., Plohl M. 2002. Variation in satellite DNA profiles: Causes and effects. EMBO J. 21, 5955–5959.

    Article  CAS  PubMed  Google Scholar 

  7. Lamb J.C., Birchler J.A. 2003. The role of DNA sequence in centromere formation. Genome Biol. 4, 214.

    Article  PubMed  Google Scholar 

  8. Enukashvili N.I., Kuznetsova I.S., Podgornaya O.I. 2003. The mammalian centromere organization. Tsitologiya. 45, 255–270.

    CAS  Google Scholar 

  9. Smit A.F. 1999. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Current Opin. Genet. Dev. 9, 657–663.

    CAS  Google Scholar 

  10. Deininger P.L., Batzer M.A. 2002. Mammalian retroelements. Genome Res. 12, 1455–1465.

    Article  CAS  PubMed  Google Scholar 

  11. Kramerov D.A., Vassetzky N.S. 2005. Short retroposons (SINEs) in eukaryotic genomes. Int. Rev. Cytol. 247, 165–221.

    PubMed  Google Scholar 

  12. Orgel L.E., Crick F.H. 1980. Selfish DNA: The ultimate parasite. Nature. 284, 604–607.

    Article  CAS  PubMed  Google Scholar 

  13. Makalowski W. 2000. Genomic scrap yard: How genomes utilize all that junk. Gene. 259, 61–67.

    CAS  PubMed  Google Scholar 

  14. Allen T.A., von Kaenel S., Goodrich J.A., Kugel J.F. 2004. The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nature Struct. Mol. Biol. 11, 816–821.

    CAS  Google Scholar 

  15. Serdobova I.M., Kramerov D.A. 1994. Use of short retroposons as phylogenetic markers. Dokl. Akad. Nauk. 335, 664–667.

    CAS  PubMed  Google Scholar 

  16. Shimamura M., Yasue H., Ohshima K., Abe H., Kato H., Kishiro T., Goto M., Munechika I., Okada N. 1997. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature. 388, 666–670.

    CAS  PubMed  Google Scholar 

  17. Shedlock A.M., Okada N. 2000. SINE insertions: Powerful tools for molecular systematics. Bioessays. 22, 148–160.

    Article  CAS  PubMed  Google Scholar 

  18. Stoneking M., Fontius J.J., Clifford S.L., Soodyall H., Arcot S.S., Saha N., Jenkins T., Tahir M.A., Deininger P.L., Batzer M.A. 1997. Alu insertion polymorphisms and human evolution: evidence for a larger population size in Africa. Genome Res. 7, 1061–1071.

    CAS  PubMed  Google Scholar 

  19. Kramerov D., Vassetzky N., Serdobova I. 1999. The evolutionary position of dormice (Gliridae) in Rodentia determined by a novel short retroposon. Mol. Biol. Evol. 16, 715–717.

    CAS  PubMed  Google Scholar 

  20. Nikaido M., Nishihara H., Hukumoto Y., Okada N. 2003. Ancient SINEs from African endemic mammals. Mol. Biol. Evol. 20, 522–527.

    CAS  PubMed  Google Scholar 

  21. Vassetzky N.S., Ten O.A., Kramerov D.A. 2003. B1 and related SINEs in mammalian genomes. Gene. 319, 149–160.

    Article  CAS  PubMed  Google Scholar 

  22. Carrol R.L. 1988. Vertebrate Paleontology and Evolution. N.Y.: Freeman and Company.

    Google Scholar 

  23. Pavlinov I.Ya. 2003. Sistematika sovremennykh mlekopitayushchikh (Taxonomy of Recent Mammals), Moscow: Mosk. Gos. Univ.

    Google Scholar 

  24. Borodulina O.R., Kramerov D.A. 2001. Short interspersed elements (SINEs) from insectivores. Two classes of mammalian SINEs distinguished by A-rich tail structure. Mammal. Genome. 12, 779–786.

    CAS  Google Scholar 

  25. Redston M.S., Kern S.E. 1994. Klenow co-sequencing: A method for eliminating “stops”. Biotechniques. 17, 286–288.

    CAS  PubMed  Google Scholar 

  26. Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.

    Article  CAS  PubMed  Google Scholar 

  27. Sarai A., Mazur J., Nussinov R., Jernigan R.L. 1989. Sequence dependence of DNA conformational flexibility. Biochemistry. 28, 7842–7849.

    Article  CAS  PubMed  Google Scholar 

  28. Gromiha M. 2000. Structure based sequence dependent stiffness scale for trinucleotides: A direct method. J. Biol. Phys. 26, 43–50.

    Article  CAS  Google Scholar 

  29. Nishihara H., Terai Y., Okada N. 2002. Characterization of novel Alu-and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol. Biol. Evol. 19, 1964–1972.

    CAS  PubMed  Google Scholar 

  30. Debrauwere H., Gendrel C.G., Lechat S., Dutreix M. 1997. Differences and similarities between various tandem repeat sequences: Minisatellites and microsatellites. Biochimie. 79, 577–586.

    Article  CAS  PubMed  Google Scholar 

  31. Masumoto H., Nakano M., Ohzeki J. 2004. The role of CENP-B and alpha-satellite DNA: De novo assembly and epigenetic maintenance of human centromeres. Chromosome Res. 12, 543–556.

    Article  CAS  PubMed  Google Scholar 

  32. Schattner P., Brooks A.N., Lowe T.M. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686–W689.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.A. Ten, O.R. Borodulina, N.S. Vassetzky, N.In. Oparina, D.A. Kramerov, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 1, pp. 74–83.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ten, O.A., Borodulina, O.R., Vassetzky, N.S. et al. Repetitive sequences of the tree shrew genome (Mammalia, Scandentia). Mol Biol 40, 63–71 (2006). https://doi.org/10.1134/S0026893306010109

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306010109

Key words

Navigation