Skip to main content
Log in

The use of nuclear DNA molecular markers for studying speciation and systematics as exemplified by the “Lacerta agilis complex” (Sauria: Lacertidae)

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Four types of nuclear DNA markers identified by the taxonprint, RAPD, and IMP (Inter-MIR-PCR) methods, and the nucleotide sequences of satellite DNA monomers have been used to analyze the molecular genetic similarity between some populations, subspecies, and species of lizards combined into the group Lacerta s. str., as well as representatives of some other genera. The notions on the systematics and phylogeny of this group based on morphological and zoogeographic criteria have been compared to the conclusions based on molecular genetic data. The genus and species subdivisions of populations based on nuclear molecular markers and morphological characters generally agree with each other, the degree of genetic differences being correlated with the taxonomy suggested by zoomorphologists. The degree of differences between the subspecies of one of the species studied, Lacerta agilis, varies depending on the molecular markers used: according to the results of RAPD analysis, all subspecies substantially differ from one another, the variation within populations being small; with respect to other markers, the differences are smaller and not equivalent. The existence of the so-called eastern and western clades of this species earlier assumed by other researchers on the basis of mtDNA and morphological data has been confirmed. There are no distinct gradations exceeding individual variation in 14 populations of L. agilis exigua (the eastern clade) with respect to IMP markers, although these populations inhabit a vast area from the Ural Mountains to the Kabardino-Balkar Republic (the Caucasus). These data suggest that the subspecies has been rapidly spreading northwards since the Pleistocene glaciation (about 15,000 years ago).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart C.-B. 1993. The powers and pittfalls of parsimony. Nature. 361, 603–607.

    CAS  PubMed  Google Scholar 

  2. Antonov A.S. 2000. Osnovy genosistematiki rastenii (Findamentals of Plant Genosystematics). Moscow: MAIK Nauka/Interperiodica.

    Google Scholar 

  3. Baker R.H., Gatesy J. 2002. Is morphology still relevant? In: Molecular Systematics and Evolution: Theory and Practice. Eds. DeSalle R., Giribe G., Wheeler W. Basel: Birkhauser, pp. 163–174.

    Google Scholar 

  4. Molecular Systematics. Eds. Hillis D.M., Moritz C., Mable B.K., Sunderland, MA: Sinauer, 1996.

    Google Scholar 

  5. Tautz D., Arctander P., Minelli A., Thomas R.H., Voger A.P. 2003. A plea for DNA taxonomy. Trends Ecol. Evol. 18, 70–74.

    Article  Google Scholar 

  6. Lee M.S.Y. 1999. Molecular phylogeny becomes functional. Trends Ecol. Evol. 14, 177–178.

    PubMed  Google Scholar 

  7. Nichols R.A. 2001. Gene tree and species tree are not the same. Biol. J. Linn. Soc. 68, 87–112.

    Google Scholar 

  8. Emelyanov A.F., Rasnitsyn A.P. 1991. Systematics, Phylogeny, and Cladistics. Priroda. 7, 23–37.

    Google Scholar 

  9. Elder J.F., Turner B.J. 1995. Concerted evolution of repetitive DNA sequences in eukaryotes. Quant. Rev. Biol. 70, 297–320.

    CAS  Google Scholar 

  10. Grechko V.V. 2002. Molecular markers in phylogeny and systematics. Genetika. 39, 1527–1541.

    Google Scholar 

  11. Hillis D.M. 1987. Molecular versus morphological approaches in evolution. Annu. Rev. Ecol. Syst. 18, 23–42.

    Article  Google Scholar 

  12. Avise J.C. 2004. Molecular Markers, Natural History, and Evolution. 2nd ed. Sunderland, MA: Sinauer.

    Google Scholar 

  13. Brower A.V.Z., DeSalle R., Vogler A. 1996. Gene tree, species tree, and systematics. Annu. Rev. Ecol. Syst. 27, 423–450.

    Article  Google Scholar 

  14. Hewitt G.M. 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112.

    Article  Google Scholar 

  15. Darevsky I.S., Shcherbak N.N., Peters T., et al. 1976. Systematics and intraspecific structure. In: Prytkaya yashcheritsa (The Sand Lizard). Ed. Yablokov A.V. Moscow: Nauka, pp. 53–68.

    Google Scholar 

  16. Bischoff W. 1991. Ubersicht der Arten and interarten der Familie Lacertidae. 3. Die Gattung Lacerta. In: Die Eidechse, Mittellungblatt der AG Lacertiden in der DGHT. Hefte 3. Bonn/Bremen, 5–18.

  17. Kalyabina-Hauf S.A., Ananyeva N.B. 2004. Phylogeny and intraspecific structure of Lanarta agilis L. 1758 (Lanartidaa, Sauria, Reptilia), a lizard species with a broad range (experience in using the mitochondrial cytochrome b gene). Tr. Zool. Inst. Ross. Akad. Nauk. 32, 1–108.

    Google Scholar 

  18. Arnold E.N. 1989. Towards a phylogeny and biogeography of the Lacertidae: Relationships within an Old-World family of lizards derived from morphology. Bull. Br. Mus (Nat. Hist.) Zool. 55, 209–257.

    Google Scholar 

  19. Arribas O.J. 1999. Phylogeny and relationships of the mountain lizards of Europe and Near East (Archaeolacerta Mertens, 1921, sensu lato) and their relationships among the Eurasian lacertid radiation. Russ. J. Herpetol. 16, 1–22.

    Google Scholar 

  20. Harris D.J. 1999. Molecular systematics and evolution of lacertid lizards. Nature Croat. 8, 161–180.

    Google Scholar 

  21. Harris D.J., Arnold E.N., Thomas R. 1998. Relationships of lacertid lizards (Reptilia: Lacertidae) estimated from mitochondrial DNA sequences and morphology. Proc. R. Soc. Lond. B. 265, 1939–1958.

    CAS  Google Scholar 

  22. Kalyabina S.A., Milto K.D., Ananyeva N.B., Legal L., Joger U., Wink H. 2001. Phylogeography and systematics of Lacerta agilis based on mitochondrial cytochrome b gene sequence: First results. Russ. J. Herpetol. 8, 149–158.

    Google Scholar 

  23. Grechko V.V., Fedorova L.V., Fedorov A.N., et al. 1997. Restriction endonuclease analysis of highly repetitive DNA as a phylogenetic tool. J. Mol. Evol. 45, 332–336.

    CAS  PubMed  Google Scholar 

  24. Fedorov A.N., Fedorova L.V., Grechko V.V., et al. 1999. Variable and invariable DNA repeat characters revealed by taxonprint approach are useful for molecular systematics. J. Mol. Evol. 48, 69–76.

    Article  CAS  PubMed  Google Scholar 

  25. Ryabinina N.L., Bannikova A.A., Kosushkin S.A., et al. 2002. Estimation of the subspecies level of differentiation in Caucasian lizards of the genus Darevskia (syn. “Lacreta saxicola complex”, Lacertidae, Sauria) using genome DNA markers. Russ. J. Herpetol. 9, 185–194.

    Google Scholar 

  26. Borodulina O.R., Kramerov D.A. 2005. PCR-based approach to SINE isolation: Simple and complex SINEs. Gene. 349, 197–205.

    Article  CAS  PubMed  Google Scholar 

  27. Ryabinina N.L., Grechko V.V., Darevsky I.S. 1998. DNA polymorphism detectable by RAPD analysis in populations of Lacertidae lizards. Genetika. 34, 1661–1667.

    Google Scholar 

  28. Ciobanu D., Grechko V.V., Darevsky I.S. 2003. Molecular evolution of NLsat satellite DNA in lizards of the genus Daravskia (Sauria: Lacertidae): Correlation with species diversity. Genetika. 39, 1527–1541.

    Google Scholar 

  29. Ciobanu D.G., Grechko V.V., Darevsky I.S., Kramerov D.A. 2004. New satellite DNA in Lacerta s. str. lizards (Sauria: Lacertidae): Evolutionary pathways and phylogenetic impact. J. Exp. Zool. 302B, 505–516.

    Article  CAS  Google Scholar 

  30. Grechko V.V., Ciobanu D.G., Darevsky I.S., Kramerov D.A. 2005. Satellite DNA of the genus Lacerta s. str. (L. agilis group), Lacertidae. Dokl. Akad. Nauk. 400, 392–395.

    Google Scholar 

  31. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  32. Van de Peer Y., De Wachter R. 1994. TREECON for Windows: A software package for construction and drawing of evolution trees for Microsoft Windows environment. Comput. Applic. Biosci. 10, 569–570.

    Google Scholar 

  33. Grechko V.V., Ryabinin D.M., Fedorov A.N., Rudykh A.I., Ryskov A.P., Semenova S.K., Darevsky I.S. 1998. Molecular genetic classification and phylogenetic relatedness of some lacertid lizard species as inferred from studies on specific distribution of restriction sites in DNA repeats (taxonprinting). Mol. Biol. 36, 172–183.

    Google Scholar 

  34. Fu J. 2000. Toward the phylogeny of the family Lacertidae: Why 4798 base pairs of mtDNA sequences cannot draw the picture. Biol. J. Linn. Soc. 71, 203–217.

    Article  Google Scholar 

  35. Ryabinin D.M., Grechko V.V., Darevsky I.S., Ryskov A.P., Semenova S.K., 1996. Comparative study of DNA repetitive sequences by means of restriction endonucleases among populations and subspecies of some lacertid lizard species. Russ. J. Herpetol. 3, 178–185.

    Google Scholar 

  36. Ciobanu D.G., Grechko V.V., Kramerov D.A. 2003. A new subfamily of satellite DNA, NLsatIV, in Daravskia lindhilmi lizards (Lacertidae): Structure and evolution. Dokl. Akad. Nauk. 392, 1–5.

    Google Scholar 

  37. Ciobanu D.G., Rudykh I.A., Ryabinina N.L., Grechko V.V., Kramerov D.A., Darevsky I.S. 2002. Reticulate evolution of parthenogenetic rock lizard species (Lacertidae): Inheritance of tandem repeats and anonymous RAPD markers. Mol. Biol. 36, 296–306.

    Google Scholar 

  38. Gilbert W., Labuda D. 1999. CORE-SINE: Eukaryotic short interspersed retroposone elements with common sequence motifs. Proc. Natl. Acad. Sci. USA. 96, 2869–2874.

    CAS  PubMed  Google Scholar 

  39. Nichols R.A., Hewitt G.M. 1994. The genetic cousequencies of long distance dispersal during colonization. Heredity. 72, 312–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Grechko, L.V. Fedorova, D.M. Ryabinin, N.L. Ryabinina, D.G. Ciobanu, S.A. Kosushkin, I.S. Darevsky, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 1, pp. 61–73.

If a gene tree conflicts with an accepted tree, one should stop and ponder why. C. B. Stewart [1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grechko, V.V., Fedorova, L.V., Ryabinin, D.M. et al. The use of nuclear DNA molecular markers for studying speciation and systematics as exemplified by the “Lacerta agilis complex” (Sauria: Lacertidae). Mol Biol 40, 51–62 (2006). https://doi.org/10.1134/S0026893306010092

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306010092

Key words

Navigation