Skip to main content
Log in

Application of Flow Cytometry for Viability Assay of Mutants for Translation Termination Factors in the Yeast Saccharomyces cerevisiae

  • SHORT COMMUNICATIONS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Nonsense mutations in the essential SUP45 and SUP35 genes encoding translation termination factors affect the viability of Saccharomyces cerevisiae cells. Flow cytometry revealed that the viability of the mutants was 3.5‒4 times lower compared to the wild-type strains. Moreover, the mutants were found to have higher sensitivity to ultrasonic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Alexandrov, A., Grosfeld, E., Mitkevich, O., Bidyuk, V., Nostaeva, A., Kukhtevich, I., Schneider, R., Shilov, E.S., Kushnirov, V.V., Dmitriev, S.E., and Gladyshev, V.N., Systematic identification of yeast mutants with increased rates of cell death reveals rapid stochastic necrosis associated with cell division, bioRxiv, 2021. https://doi.org/10.1101/2021.10.20.465133

  2. Barbitoff, Y., Matveenko, A., Matiiv, A., Maksiutenko, E., Moskalenko, S., Drozdova, P., Polev, D., Beliavskaia, A., Danilov, L., Predeus, A., and Zhouravleva, G., Chromosome-level genome assembly and structural variant analysis of two laboratory yeast strains from the Peterhof Genetic Collection lineage, G3: Genes, Genomes, Genetics (Bethesda), 2021, vol. 11, no. 4, p. jkab029. https://doi.org/10.1093/g3journal/jkab029

  3. Chabelskaya, S., Kiktev, D., Inge-Vechtomov, S., Philippe, M., and Zhouravleva, G., Nonsense mutations in the essential gene SUP35 of Saccharomyces cerevisiae are non-lethal, Mol. Genet. Genomics, 2004, no. 3, pp. 297–307. https://doi.org/10.1007/s00438-004-1053-1

  4. Davey, H. and Guyot, S., Estimation of microbial viability using flow cytometry, Curr. Protoc. Cytom., 2020, vol. 93, no. 1, p. e72. https://doi.org/10.1002/cpcy.72

    Article  PubMed  Google Scholar 

  5. Gietz, R., Schiestl, R., Willems, A., and Woods, R., Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure, Yeast, 1995, vol. 11, pp. 355–360. https://doi.org/10.1002/yea.320110408

    Article  CAS  PubMed  Google Scholar 

  6. Inge-Vechtomov, S., Zhouravleva, G., and Philippe, M., Eukaryotic release factors (eRFs) history, Biol. Cell, 2003, vol. 95, nos. 3–4, pp. 195–209. https://doi.org/10.1016/s0248-4900(03)00035-2

    Article  CAS  PubMed  Google Scholar 

  7. Kaiser, C., Michaelis, S, and Mitchell, A., Cold Spring Harbor Laboratory Course Manual, NY: Cold Spring Harbor Laboratory Press, 1994.

    Google Scholar 

  8. Kwolek-Mirek, M. and Zadrag-Tecza, R., Comparison of methods used for assessing the viability and vitality of yeast cells, FEMS Yeast Res., 2014, vol. 14, no. 7, pp. 1068–1079. https://doi.org/10.1111/1567-1364.12202

    Article  CAS  PubMed  Google Scholar 

  9. Maksiutenko, E., Barbitoff, Y., Matveenko, A., Moskalenko, S., and Zhouravleva, G., Gene amplification as a mechanism of yeast adaptation to nonsense mutations in release factor genes, Genes (Basel), 2021, vol. 12, no. 12, p. 2019. https://doi.org/10.3390/genes12122019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Merritt, G., Naemi, W., Mugnier, P., Webb, H., Tuite, M., and von der Haar, T., Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast, Nucl. Acids Res., 2010, vol. 38, no. 16, pp. 5479–5492. https://doi.org/10.1093/nar/gkq338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moskalenko, S., Chabelskaya, S., Philippe, M., Inge-Vechtomov, S., and Zhouravleva, G., Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae, BMC Mol. Biol., 2003, vol. 4, p. 2. https://doi.org/10.1186/1471-2199-4-2

    Article  PubMed  PubMed Central  Google Scholar 

  12. RStudio Team, RStudio: Integrated Development for R. Boston: RStudio, PBC, 2020. http://www.rstudio.com/.

  13. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1989, 2nd ed.

    Google Scholar 

  14. Valouev, I., Kushnirov, V., and Ter-Avanesyan, M., Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation, Cell Motility Cytoskeleton, 2002, vol. 52, no. 3, pp. 161–173. https://doi.org/10.1002/cm.10040

    Article  CAS  Google Scholar 

  15. Volkov, K., Aksenova, A., Soom, M., Osipov, K., Svitin, A., Kurischko, C., Shkundina, I., Ter-Avanesyan, M., Inge-Vechtomov, S., and Mironova, L., Novel non-mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae, Genetics, 2002, vol. 160, pp. 25–36. https://doi.org/10.1093/genetics/160.1.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhouravleva, G., Frolova, L., Le Goff, X., Le Guellec, R., Inge-Vechtomov, S., Kisselev, L., and Philippe M., Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3, EMBO J., 1995, vol. 14, no. 16, pp. 4065–4072. https://doi.org/10.1002/j.1460-2075.1995.tb00078.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhouravleva, G.A., Bondarev, S.A., Zemlyanko, O.M., and Moskalenko, S.E., Role of proteins interacting with the eRF1 and eRF3 release factors in the regulation of translation and prionization, Mol. Biol. (Moscow), 2022, vol. 56, no. 2, pp. 206–226. https://doi.org/10.31857/S002689842201013X

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Equipment from the Resource Center “Development of Molecular and Cell Technologies” was used in the present study. This article is dedicated to the 300th anniversary of St. Petersburg State University.

Funding

This work was supported by the Russian Science Foundation, grant no. 23-14-00063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Zhouravleva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human or animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Oleskin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremova, E.P., Zemlyanko, O.M. & Zhouravleva, G.A. Application of Flow Cytometry for Viability Assay of Mutants for Translation Termination Factors in the Yeast Saccharomyces cerevisiae. Microbiology 93, 236–239 (2024). https://doi.org/10.1134/S0026261723604244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723604244

Keywords:

Navigation