Skip to main content
Log in

Genetic Screening using High-Throughput Barcode Sequencing of Saccharomyces cerevisiae Knockout Collection: Search for Regulators of mtDNA Intracellular Selection

  • SHORT COMMUNICATIONS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

We searched for genes whose deletion affects mitochondrial heteroplasmy in the yeast Saccharomyces cerevisiae. In order to do this, we crossed a yeast knockout collection pool (rho+) with a rho strain containing a large deletion in its mtDNA. The resulting mixture of cells was plated onto selective media that made it possible to distinguish between diploid cells that had lost and retained wild-type mtDNA as a result of such crossing. From the resulting pools (initial one, cells that lose rho+ mtDNA, and those that retained it), we isolated DNA and determined the proportion of deletion strains using high-throughput sequencing. This made it possible to identify functional groups of genes that reduce the ability of yeast cells to maintain rho+ mtDNA in a state of heteroplasmy with rho mtDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Gene Ontology Consortium, The Gene Ontology project in 2008, Nucleic Acids Res, 2008, vol. 36, pp. D440–D444.

    Article  Google Scholar 

  2. Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., André, B., Arkin, A.P., Astromoff, A., Bakkoury, M.E., Bangham, R., Benito, R., et al., Functional profiling of the Saccharomyces cerevisiae genome, Nature, 2002, vol. 418, pp. 387–391.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Karavaeva, I.E., Golyshev, S.A., Smirnova, E.A., Sokolov, S.S., Severin, F.F., and Knorre, D.A., Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA, J. Cell. Sci., 2017, vol. 130, pp. 1274–1284.

  4. Knorre, D.A. Intracellular quality control of mitochondrial DNA: evidence and limitations, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2020, vol. 375, p. 20190176.

    Article  CAS  PubMed  Google Scholar 

  5. Kolberg, L., Raudvere, U., Kuzmin, I., Adler, P., Vilo, J., and Peterson, H., g:Profiler-interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update), Nucleic Acids Res., 2023, vol. 51, pp. W207–W212.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee, A.Y., St. Onge, R.P., Proctor, M.J., Wallace, I.M., Nile, A.H., Spagnuolo, P.A., Jitkova, Y., Gronda, M., Wu, Y., Kim, M.K., and Cheung-Ong, K., Mapping the cellular response to small molecules using chemogenomic fitness signatures, Science, 2014, vol. 344, pp. 208–211.

  7. Qian, W., Ma, D., Xiao, C., Wang, Z., and Zhang, J., The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast, Cell Rep., 2012, vol. 2, pp. 1399–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Puddu, F., Herzog, M., Selivanova, A., Wang, S., Zhu, J., Klein-Lavi, S., Gordon, M., Meirman, R., Millan-Zambrano, G., Ayestaran, I., and Salguero, I., Genome architecture and stability in the Saccharomyces cerevisiae knockout collection, Nature, 2019, vol. 573, pp. 416–420.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sherman, F., Getting started with yeast, Methods Enzymol., 2002, vol. 350, pp. 3–41.

    Article  CAS  PubMed  Google Scholar 

  10. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Mesirov, J.P., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 102, pp. 15545–15550.

    Article  ADS  Google Scholar 

  11. Turco, G., Chang, C., Wang, R.Y., Kim, G., Stoops, E.H., Richardson, B., Sochat, V., Rust, J., Oughtred, R., Thayer, N., and Kang, F., Global analysis of the yeast knockout phenome, Sci. Adv., 2023, vol. 9, p. eadg5702.

  12. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L.I., and Fu, X., clusterProfiler 4.0: a universal enrichment tool for interpreting omics data, Innovation (Camb.), 2021, vol. 2, p. 100141.

    CAS  PubMed  Google Scholar 

Download references

Funding

The work was conducted with the support of the Russian Science Foundation grant, project 22-14-00108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Knorre.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: GO—gene ontology; mtDNA—mitochondrial DNA; ORF—open reading frame; YKO—yeast knockout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlaka, A.A., Glagoleva, E.S., Kashko, N.D. et al. Genetic Screening using High-Throughput Barcode Sequencing of Saccharomyces cerevisiae Knockout Collection: Search for Regulators of mtDNA Intracellular Selection. Microbiology 92 (Suppl 1), S114–S117 (2023). https://doi.org/10.1134/S0026261723604001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723604001

Keywords:

Navigation