Skip to main content
Log in

Phosphonatase Operons of Organophosphonate-Degrading Soil Bacteria of the Genus Achromobacter

  • SHORT COMMUNICATIONS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Novel phosphonoacetaldehyde hydrolases (phosphonatases) were isolated from glyphosate-degrading bacteria Achromobacter spp., and their kinetic and molecular characteristics were studied comparatively. Based on MLST analysis of their nucleotide reductase genes, the strains under study were identified as A. aegrifaciens and A. insolitus. Nonspecific induction of phosphonatase was observed in the presence of glyphosate, whereas the natural substrate of the phosphonatase pathway had a negligible effect. Complete genome sequencing disclosed presence of a phosphonatase operon of unusual structure in both bacterial species. In addition to the phosphonatase gene phnX, it also included a gene of a LysR-like transcriptional regulator and two genes of novel proteins with putative functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Castle, L.A., Siehl, D.L., and Gorton, R., Discovery and directed evolution of a glyphosate tolerance gene, Science, 2004, vol. 304, pp. 1151–1154. https://doi.org/10.1126/science.1096770

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Dumora, C., Lacoste, A.-M., Cassaigne, A., and Mazat, J.-P., Allosteric regulation of phosphonoacetaldehyd hydrolase by n-butylphosphonic acid, Biochem. J., 1991, vol. 280, pp. 557–559. https://doi.org/10.1042/BJ2800557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dumora, C., Lacoste, A.-M., and Cassaigne, A., Phosphonoacetaldehyde hydrolase from Pseudomonas aeruginosa: purification properties and comparison with Bacillus cereus enzyme, Biochem. Biophys. Acta, 1989, vol. 997, pp. 193–198. https://doi.org/10.1016/0167-4838(89)90186-6

    Article  CAS  PubMed  Google Scholar 

  4. Ermakova, I.T., Shushkova, T.V., and Leontievskii, A.A., Microbial degradation of organophosphonates by soil bacteria, Microbiology (Moscow), 2008, vol. 77, pp. 615–620. https://doi.org/10.1134/S0026261708050160

    Article  CAS  Google Scholar 

  5. Ermakova, I.T., Shushkova, T.V., Sviridov, A.V., Zelenkova, N.F., Vinokurova, N.G., Baskunov, B.P., and Leontievskii, A.A., Organophosphonates utilization by soil strain of Ochrobactrum anthropi and Achromobacter sp., Arch. Microbiol., 2017, vol. 199, pp. 665–675. https://doi.org/10.1007/s00203-017-1343-8

    Article  CAS  PubMed  Google Scholar 

  6. Gardner, S.G., Johns, K.D., Tanner, R., and M-c‑Cleary, W.R., The PhoU protein from Escherichia coli interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane, J. Bacteriol., 2014, vol. 196, pp. 1741–1752. https://doi.org/10.1128/JB.00029-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horsman, G.P. and Zechel, D.L., Phosphonate biochemistry, Chem. Rev., 2017, vol. 117, pp. 5704–5783. https://doi.org/10.1021/acs.chemrev.6b00536

    Article  CAS  PubMed  Google Scholar 

  8. Isbell, A.F. and Englert, L.F., Phosphonoacetaldehyde, J. Organ. Chem., 1968, vol. 34, pp. 755–756.

    Article  Google Scholar 

  9. La Nauze, J., Rosenberg, H., and Shaw, D.C., The enzymic cleavage of the carbon-phosphorus bond: purification and properties of phosphonatase, Biochim. Biophys. Acta, 1970, vol. 212, pp. 332–350. https://doi.org/10.1016/0005-2744(70)90214-7

    Article  CAS  PubMed  Google Scholar 

  10. McSorley, F.R., Wyatt, P.B., Martinez, A., DeLong, E.F., Hove-Jensen, B., and Zechel, D.L., PhnY and PhnZ comprise a new oxidative pathway for enzymatic cleavage of carbon-phosphorus bond, J. Am. Chem. Soc., 2012, vol. 134, pp. 8364–8367. https://doi.org/10.1021/ja302072f

    Article  CAS  PubMed  Google Scholar 

  11. McGrath, J.W., Chin, J.P., and Quinn, J.P., Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules, Nat. Rev. Microbiol., 2013, vol. 11, pp. 412–419. https://doi.org/10.1038/nrmicro3011

    Article  CAS  PubMed  Google Scholar 

  12. Kishore, G.M. and Barry, G.F., Patent US5463175A, 1995.

  13. Quinn, J.P., Kulakova, A.N., Cooley, N.A., and McGrath, J.W., New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling, Environ. Microbiol., 2007, vol. 9, pp. 2392–2400. https://doi.org/10.1111/j.1462-2920.2007.01397.x

    Article  CAS  PubMed  Google Scholar 

  14. Rajakovich, L.J., Pandelia, M.-E., Mitchell, A.J., Chang, W.-C., Zhang, B., Boal, A.K., Krebs, C., and Bollinger, J.M., Jr., A new microbial pathway for organophosphonate degradation catalyzed by two previously misannotated non-hem-iron oxygenases, Biochemistry, 2019, vol. 58, pp. 1627–1647. https://doi.org/10.1021/acs.biochem.9b00044

    Article  CAS  PubMed  Google Scholar 

  15. Rosenberg, H. and La Nauze, J., The metabolism of phosphonates by microorganism. The transport of aminomethylphosphonic acid in Bacillus cereus, Biochim. Biophys. Acta, 1967, vol. 141, pp. 79–90. https://doi.org/10.1016/0304-4165(67)90247-4

    Article  CAS  PubMed  Google Scholar 

  16. Sosa, O.A., Repeta, D.J., DeLong, E.F., Ashkezari, M.D., and Karl, D.M., Phosphate-limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation, Environ. Microbiol., 2019, vol. 21, p. 2402–2414. https://doi.org/10.1111/1462-2920.14628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spilker, T., Vandamme, P., and LiPuma, J.J., A multilocus sequence typing scheme implies population structure and reveals several putative novel Achromobacter species, J. Clin. Microbiol., 2012, vol. 50, pp. 3010–3015. https://doi.org/10.1128/JCM.00814-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spilker, T., Vandamme, P., and LiPuma, J.J., Identification and distribution of Achromobacter species in cystic fibrosis, J. Cyst. Fibros., 2013, vol. 12, pp. 298–301. https://doi.org/10.1016/j.jcf.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  19. Sviridov, A.V., Shushkova, T.V., Zelenkova, N.F., Vinokurova, N.G., Morgunov, I.G., Ermakova, I.T., and Leontievsky, A.A., Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp., Appl. Microbiol. Biotechnol., 2012, vol. 93, pp. 787–796. https://doi.org/10.1007/s00253-011-3485-y

    Article  CAS  PubMed  Google Scholar 

  20. Sviridov, A.V., Ermakova, I.T., Shushkova, T.V., Epiktetov, D.O., and Leontievskii, A.A., Fosfoorganicheskie neirotoxiny (Phosphoorganic Neurotoxins), Moscow: RIOR, 2020, pp. 253–285.

  21. Sviridov, A.V., Shushkova, T.V., Epiktetov, D.O., Tarlachkov, S.V., Ermakova, I.T., and Leontievskii, A.A., Biodegradation of organophosphorus pollutants by soil bacteria: biochemical aspects and unsolved problems, Appl. Biochem. Microbiol., 2021, vol. 57, pp. 836–844. https://doi.org/10.1134/S0003683821070085

    Article  CAS  Google Scholar 

  22. Talbot, H.W., Johnson, L.M., and Munnecke, D.M., Glyphosate utilization by Pseudomonas sp. and Alcaligenes sp. isolated from environmental sources, Curr. Microbiol., 1984, vol. 10, pp. 255–260. https://doi.org/10.1007/BF01577137

    Article  CAS  Google Scholar 

  23. Tarlachkov, S.V., Epiktetov, D.O., Sviridov, A.V., Shushkova, T.V., Ermakova, I.T., and Leontievsky, A.A., Draft Genome Sequence of glyphosate-degrading Achromobacter insolitus strain Kg 19 (VKM B-3295) isolated from agricultural soil, Microbiol. Resour. Announc., 2020, vol. 9, p. E00284-20. https://doi.org/10.1128/MRA.00284-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ternan, N.G. and Quinn, J.P., Phosphate Starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida, NG2, System. Appl. Microbiol., 1998, vol. 21, pp. 346–352. https://doi.org/10.1016/S0723-2020(98)80043-X

    Article  CAS  Google Scholar 

  25. Worsdorfer, B., Lingaraju, M., Yennawar, N.H., Boal, A.K., Krebs, C., Bollinger, J.M., and Pandelia, M.-E., Organophosphonate-degrading PhnZ reveals an emerging family of HD domain mixed-valent diiron oxygenases, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 18874–18879. https://doi.org/10.1073/pnas.1315927110

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zangelmi, E., Stankovic, T., Malatesta, M., Acquotti, D., Pallitsch, K., and Peracchi, A., Discovery of new, recurrent enzyme in bacterial phosphonate degradation: (R)-1-hydroxy-2-aminoethylphosphonate ammonia-lyase, Biochemistry, 2021, vol. 60, pp. 1214–1225. https://doi.org/10.1021/acs.biochem.1c00092

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, G., Mazurkie, A.S., Dunaway-Mariano, D., and Allen, K.N., Kinetic evidence for a substrate-induced fit in phosphonoacetaldehyde hydrolase catalysis, Biochemistry, 2002, vol. 41, pp. 13370−13377. https://doi.org/10.1021/bi026388n

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Genome sequencing and analysis, as well as studies of genes of novel oxidoreductases found within phosphonatese operons of strains A. aegrifaciens Km 11 and A. insolitus Kg 13 were supported by Russian Science Foundation grant 23-24-00152 “Novel oxidoreductases of organophoshonate-degrading soil bacteria”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Epiktetov.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by D. Timchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epiktetov, D.O., Sviridov, A.V., Tarlachkov, S.V. et al. Phosphonatase Operons of Organophosphonate-Degrading Soil Bacteria of the Genus Achromobacter. Microbiology 92 (Suppl 1), S45–S49 (2023). https://doi.org/10.1134/S0026261723603548

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723603548

Keywords:

Navigation