Skip to main content
Log in

Adaptation of the Acidophilic Fungus Sistotrema brinkmannii to the pH Factor

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Investigation of the growth rate of Sistotrema brinkmannii at different pH values, temperature, and NaCl concentration showed that this fungus was a mesophile, preferred a salt-free medium, and was an obligate acidophile, since it had a pronounced growth optimum at pH 3.0–4.0 and did not grow at pH 7.0. To reveal the protective mechanisms allowing this fungus to develop under acidic conditions, the composition of its osmolytes and lipids was studied. This is the first report on occurrence of a large amount of trehalose (4.0‒6.6% of dry weight) in the mycelium of the fungus during its growth under optimal conditions, confirming the use of osmolytes by acidophiles for adaptation. At the same time, at the borders of the growth range (pH 2.6 and 6.0), the amount of trehalose in the mycelium of the fungus decreased by 2.5 times, which was in agreement with a narrow growth optimum of the fungus in its natural environments (pH 3.0–4.0). The composition of membrane lipids of the fungus was characterized by a high proportion of sphingolipids (up to 60% of the total), which decreased twofold during growth under optimal conditions. The main membrane lipids, apart from sphingolipids, were phosphatidic acids, phosphatidylethanolamines, and sterols; the proportion of these lipids increased with time. The composition of membrane lipids of the fungus at pH 2.6 did not differ much from the optimal conditions, while in the near-neutral region there was a twofold increase in the proportion of sphingolipids, indicating their adaptive value. The simultaneous decrease in the proportion of sphingolipids and the increase in the level of trehalose in the growth dynamics suggest association of these compounds in the protection of cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Agnew, M.P., Craigie, C.R., Weralupitiya, G., Reis, M.M., Johnson, P.L., and Reis, M.G., Comprehensive evaluation of parameters affecting one-step method for quantitative analysis of fatty acids in meat, Metabolites, 2019, vol. 9, art. 189, pp. 1‒15. https://doi.org/10.3390/metabo9090189

  2. Aguilera, A. and González-Toril, E., Eukaryotic life in extreme environments: acidophilic fungi, in Fungi in Extreme Environments: Ecological Role and Biotechnological Significance, Cham: Springer Int., 2019, pp. 21–38. https://doi.org/10.1007/978-3-030-19030-9_2

    Book  Google Scholar 

  3. Amaral-Zettler L.A. Eukaryotic diversity at pH extremes, Front. Microbiol. 2012, vol. 3, art. 00441, pp. 1–17. https://doi.org/10.3389/fmicb.2012.00441

  4. Baker-Austin, C. and Dopson, M., Life in acid: pH homeostasis in acidophiles, Trends Microbiol., 2007, vol. 15, pp. 165–171. https://doi.org/10.1016/j.tim.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  5. Baker, B.J., Tyson, G.W., Goosherst, L., and Banfield, J.F., Insights into the diversity of eukaryotes in acid mine drainage biofilm communities, Appl. Environ. Microbiol., 2009, vol. 75, pp. 2192–2199. https://doi.org/10.1128/AEM.02500-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bondarenko, S.A., Ianutsevich, E.A., Danilova, O.A., Grum-Grzhimaylo, A.A., Kotlova, E.R., Kamzolkina, O.V., Bilanenko, E.N., and Tereshina, V.M., Membrane lipids and soluble sugars dynamics of the alkaliphilic fungus Sodiomyces tronii in response to ambient pH, Extremophiles, 2017, vol. 21, pp. 743–754. https://doi.org/10.1007/s00792-017-0940-4

    Article  CAS  PubMed  Google Scholar 

  7. Brobst K.M., Gas–liquid chromatography of trimethylsilyl derivatives: analysis of corn syrup, in General Carbohydrate Methods, Whistler, R.L. and BeMiller, J.N., Eds., New York: Academic, 1972, pp. 3–8.

  8. Brown, A.D. and Simpson, J.R., Water relations of sugar-tolerant yeasts: the role of intracellular polyols, J. Gen. Microbiol., 1972, vol. 72, pp. 589–591. https://doi.org/10.1099/00221287-72-3-589

    Article  CAS  PubMed  Google Scholar 

  9. Coker, J.A., Recent advances in understanding extremophiles, F1000Research, 2019, vol. 8, p. 1917. https://doi.org/10.12688/f1000research.20765.1

    Article  CAS  Google Scholar 

  10. Coleine, C., Stajich, J.E., and Selbmann, L., Fungi are key players in extreme ecosystems, Trends Ecol. Evol., 2022, vol. 37, pp. 517–528. https://doi.org/10.1016/j.tree.2022.02.002

    Article  CAS  PubMed  Google Scholar 

  11. Costenoble, R., Valadi, H., Gustafsson, L., Niklasson, C., and Johan Franzen, C., Microaerobic glycerol formation in Saccharomyces cerevisiae, Yeast, 2000, vol. 16, pp. 1483–1495. https://doi.org/10.1002/1097-0061(200012)16:16<1483::AID-YEA642>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  12. Danilova, O.A., Ianutsevich, E.A., Bondarenko, S.A., Georgieva, M.L., Vikchizhanina, D.A., Groza, N.V., Bilanenko, E.N., and Tereshina, V.M., Osmolytes and membrane lipids in the adaptation of micromycete Emericellopsis alkalina to ambient pH and sodium chloride, Fungal Biol., 2020, vol. 124, pp. 884–891. https://doi.org/10.1016/j.funbio.2020.07.004

    Article  CAS  PubMed  Google Scholar 

  13. Elbein, A.D., Pan, Y.T., Pastuszak, I., and Carroll, D., New insights on trehalose: a multifunctional molecule, Glycobiology, 2003, vol. 13, no. 4, pp. 17R‒27R. https://doi.org/10.1093/glycob/cwg047

    Article  CAS  PubMed  Google Scholar 

  14. Gonçalves, V.N., Vaz, A.B.M., Rosa, C.A., and Rosa, L.H., Diversity and distribution of fungal communities in lakes of Antarctica, FEMS Microbiol. Ecol., 2012, vol. 82, pp. 459–471. https://doi.org/10.1111/j.1574-6941.2012.01424.x

    Article  CAS  PubMed  Google Scholar 

  15. Gross, S. and Robbins, E.I., Acidophilic and acid-tolerant fungi and yeasts, Hydrobiologia, 2000, vol. 433, pp. 91–109. https://doi.org/10.1023/A:1004014603333

    Article  Google Scholar 

  16. Grum-Grzhimaylo, O.A., Debets, A.J.M., and Bilanenko, E.N., The diversity of microfungi in peatlands originated from the White Sea, Mycologia, 2016, vol. 108, pp. 233‒254. https://doi.org/10.3852/14-346

    Article  PubMed  Google Scholar 

  17. Gunde-Cimerman, N., Plemenitaš, A., and Oren, A., Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations, FEMS Microbiol. Rev., 2018, vol. 42, pp. 353–375. https://doi.org/10.1093/femsre/fuy009

    Article  CAS  PubMed  Google Scholar 

  18. Hallsworth, J.E., Mancinelli, R.L., Conley, C.A., Dallas, T.D., Rinaldi, T., Davila, A.F., Benison, K.C., Rapoport, A., Cavalazzi, B., Selbmann, L., Changela, H., Westall, F., Yakimov, M.M., Amils, R., and Madigan, M.T., Astrobiology of life on Earth, Environ. Microbiol., 2021, vol. 23, pp. 3335–3344. https://doi.org/10.1111/1462-2920.15499

    Article  PubMed  Google Scholar 

  19. Ianutsevich, E.A., Danilova, O.A., Groza, N.V., Kotlova, E.R., and Tereshina, V.M., Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures, Microbiology (SGM), 2016, vol. 162, pp. 989–999. https://doi.org/10.1099/mic.0.000279

    Article  CAS  PubMed  Google Scholar 

  20. Ianutsevich, E.A., Danilova, O.A., Kurilov, D.V., Zavarzin, I.V., and Tereshina, V.M. Osmolytes and membrane lipids in adaptive response of thermophilic fungus Rhizomucor miehei to cold, osmotic and oxidative shocks, Extremophiles, 2020, vol. 24, pp. 391–401. https://doi.org/10.1007/s00792-020-01163-3

    Article  CAS  PubMed  Google Scholar 

  21. Inouye, M. and Phadtare, S., Cold-shock response and adaptation to near-freezing temperature in cold-adapted yeasts, in Cold-Adapted Yeasts: Biodiversity, Adaptation Strategies and Biotechnological Significance, Buzzini, P. and Margesin, R., Eds., Berlin: Springer Berlin Heidelberg, 2014, pp. 243–257. https://doi.org/10.1007/978-3-642-39681-6

    Book  Google Scholar 

  22. Iturriaga, G., Suárez, R., and Nova-Franco, B., Trehalose metabolism: from osmoprotection to signaling, Int. J. Mol. Sci., 2009, vol. 10, pp. 3793–3810. https://doi.org/10.3390/ijms10093793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jennings, D.H., Polyol metabolism in fungi, in Advances in Microbial Physiology, Rose, A.H. and Tempest, D.W., Eds., London: Academic, 1985, pp. 149–193. https://doi.org/10.1016/S0065-2911(08)60292-1

    Book  Google Scholar 

  24. Kane, P.M., Proton transport and pH control in fungi, in Yeast Membrane Transport Advances in Experimental Medicine and Biology, Ramos, J., Sychrová, H., and Kschischo, M., Eds., Cham: Springer, 2016, pp. 33–68. https://doi.org/10.1016/S0065-2911(08)60292-1

    Book  Google Scholar 

  25. Kates, M., Techniques of lipidology: isolation, analysis and identification of lipids, in Laboratory Techniques in Biochemistry and Molecular Biology, Work, T.S. and Work, E., Eds., Amsterdam: North-Holland, 1972, pp. 267–610. https://doi.org/10.1016/S0075-7535(08)70544-8

    Book  Google Scholar 

  26. Koide, R.T., Shumway, D.L., and Stevens, C.M., Soluble carbohydrates of red pine (Pinus resinosa) mycorrhizas and mycorrhizal fungi, Mycol. Res., 2000, vol. 104, pp. 834–840. https://doi.org/10.1017/S0953756299002166

    Article  CAS  Google Scholar 

  27. Kozlova, M.V., Ianutsevich, E.A., Danilova, O.A., Kamzolkina, O.V., and Tereshina, V.M., Lipids and soluble carbohydrates in the mycelium and ascomata of alkaliphilic fungus Sodiomyces alkalinus, Extremophiles, 2019, vol. 23, pp. 487–494. https://doi.org/10.1007/s00792-019-01100-z

    Article  CAS  PubMed  Google Scholar 

  28. Mattoon, E.R., Casadevall, A., and Cordero, R.J., Beat the heat: correlates, compounds, and mechanisms involved in fungal thermotolerance, Fungal Biol. Rev., 2021, vol. 36, pp. 60–75. https://doi.org/10.1016/j.fbr.2021.03.002

    Article  CAS  Google Scholar 

  29. McMahon, H.T. and Gallop, J.L., Membrane curvature and mechanisms of dynamic cell membrane remodelling, Nature, 2005, vol. 438, pp. 590–596. https://doi.org/10.1038/nature04396

    Article  CAS  PubMed  Google Scholar 

  30. Merino, N., Aronson, H.S., Bojanova, D.P., Feyhl-Buska, J., Wong, M.L., Zhang, S., and Giovannelli, D., Living at the extremes: extremophiles and the limits of life in a planetary context, Front. Microbiol., 2019, vol. 10, art. 780. https://doi.org/10.3389/fmicb.2019.00780

    Article  PubMed  PubMed Central  Google Scholar 

  31. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H., An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids, J. Microbiol. Methods, 1984, vol. 2, pp. 233–241. https://doi.org/10.1016/0167-7012(84)90018-6

    Article  CAS  Google Scholar 

  32. Nazareth, S. and Gonsalves, V., Aspergillus penicillioides— a true halophile existing in hypersaline and polyhaline econiches, Ann. Microbiol., 2014, vol. 64, pp. 397–402. https://doi.org/10.1007/s13213-013-0646-5

    Article  Google Scholar 

  33. Nichols, B.W., Separation of the lipids of photosynthetic tissues: improvements in analysis by thin-layer chromatography, Biochim. Biophys. Acta—Spec. Sect. Lipids Relat. Subj., 1963, vol. 70, pp. 417–422. https://doi.org/10.1016/0926-6542(63)90060-X

    Article  CAS  Google Scholar 

  34. Péter, M., Gudmann, P., Kóta, Z., Török, Z., Vígh, L., Glatz, A., and Balogh, G., Lipids and trehalose actively cooperate in heat stress management of Schizosaccharomyces pombe, Int. J. Mol. Sci., 2021, vol. 22, art. 13272. https://doi.org/10.3390/ijms222413272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rothschild, L.J. and Mancinelli, R.L., Life in extreme environments, Nature, 2001, vol. 409, pp. 1092–1101. https://doi.org/10.1038/35059215

    Article  CAS  PubMed  Google Scholar 

  36. Rousk, J., Brookes, P.C., and Bååth, E., Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization, Appl. Environ. Microbiol., 2009, vol. 75, pp. 1589–1596. https://doi.org/10.1128/AEM.02775-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Somogyi, M., Determination of blood sugar, J. Biol. Chem., 1945, vol. 160, pp. 69–73. https://doi.org/10.1016/S0021-9258(18)43098-0

    Article  CAS  Google Scholar 

  38. Tapia, H. and Koshland, D.E., Trehalose is a versatile and long-lived chaperone for desiccation tolerance, Curr. Biol., 2014, vol. 24, pp. 2758–2766. https://doi.org/10.1016/j.cub.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  39. Tereshina, V.M., Memorskaya, A.S., and Kotlova, E.R., The effect of different heat influences on composition of membrane lipids and cytosol carbohydrates in mycelial fungi, Microbiology (Moscow), 2011, vol. 80, pp. 455–460. https://doi.org/10.1134/S0026261711040199

    Article  CAS  Google Scholar 

  40. Vaskovsky, V.E., Kostetsky, E.Y., and Vasendin, I.M., A universal reagent for phospholipid analysis, J. Chromatogr. A, 1975, vol. 114, pp. 129–141. https://doi.org/10.1016/S0021-9673(00)85249-8

    Article  CAS  Google Scholar 

  41. Weete, J.D., Introduction to fungal lipids, in Fungal Lipid Biochemistry, Kritchevsky, D., Ed., Boston: Springer US, 1974, vol. 1, pp. 3–36. https://doi.org/10.1007/978-1-4684-2829-2_1

    Book  Google Scholar 

  42. Yancey, P.H. and Siebenaller, J.F., Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms, J. Exp. Biol., 2015, vol. 218, pp. 1880–1896. https://doi.org/10.1242/jeb.114355

    Article  PubMed  Google Scholar 

  43. Yancey, P.H., Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses, J. Exp. Biol., 2005, vol. 208, pp. 2819–2830. https://doi.org/10.1242/jeb.01730

    Article  CAS  PubMed  Google Scholar 

  44. Yanutsevich, E.A., Memorskaya, A.S., Groza, N.V., Kochkina, G.A., and Tereshina, V.M., Heat shock response in the thermophilic fungus Rhizomucor miehei, Microbiology (Moscow), 2014, vol. 83, pp. 498–504. https://doi.org/10.1134/S0026261714050282

    Article  CAS  Google Scholar 

  45. Yu, R.K., Koerner, T.A.W., Neel Scarsdale, J., Prestegard, J.H., Scarsdale, J.N., and Prestegard, J.H., Elucidation of glycolipid structure by proton nuclear magnetic resonance spectroscopy, Chem. Phys. Lipids, 1986, vol. 42, pp. 27–48. https://doi.org/10.1016/0009-3084(86)90041-1

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, grant no. 22-74-00040 (https://rscf.ru/en/project/22-74-00040/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ianutsevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ianutsevich, E.A., Danilova, O.A., Grum-Grzhimaylo, O.A. et al. Adaptation of the Acidophilic Fungus Sistotrema brinkmannii to the pH Factor. Microbiology 92, 370–378 (2023). https://doi.org/10.1134/S0026261723600210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723600210

Keywords:

Navigation