Skip to main content
Log in

Microbial Processes of Methane Oxidation at the Kara Sea Sites of Gas Prospecting

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Methane oxidation rates and diversity of methane-oxidizing microorganisms in the Kara Sea upper sediments at the sites of conserved gas prospecting wells were investigated. Analysis of the 16S rRNA gene sequences revealed members of the class Gammaproteobacteria, order Methylococcales. All samples exhibited similar diversity of the methane filter microorganisms, comprising mainly of methanotrophs related to the genus Methyloprofundus and of uncultured methanotrophic bacteria detected previously in the upper sediments of the Arctic seas. Molecular identification of methane-oxidizing bacteria of this community by high-throughput sequencing of the pmoA gene encoding particulate methane monooxygenase confirmed the similar structure of the methane filter in the upper sediments impaired by drilling and at the reference sites at significant distance from the wells. The sediments at the conserved well drilled less than two years earlier were shown to have the characteristics of a methane seep, i.e., elevated level of dissolved methane and high rates of microbial methane oxidation. No indication of methane seepage was observed for the wells conserved more than two years earlier; abundance of methane-oxidizing bacteria in their vicinity was below the detection threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Begmatov, S., Savvichev, A.S., Kadnikov, V.V., Beletsky, A.V., Rusanov, I.I., Klyuvitkin, A.A., Novichkova, E.A., Mardanov, A.V., Pimenov, N.V., and Ravin, N.V., Microbial communities involved in methane, sulfur and nitrogen cycling in the sediments of the Barents Sea, Microorganisms, 2021, vol. 9, p. 2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Kevin Bealer, K., and Madden, T.L., BLAST+: architecture and applications, BMC Bioinform., 2009, vol. 10, p. 421.

    Article  Google Scholar 

  3. Capella-Gutiérrez, S., Silla-Martínez, J.M., and Gabaldón, T., trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinform., 2009, vol. 25, pp. 1972–1973.

    Article  Google Scholar 

  4. Chen, Y., Dumont, M.G., Cébron, A., and Murrell, J.C., Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes, Environ. Microbiol., 2007, vol. 9, pp. 2855–2869.

    Article  CAS  PubMed  Google Scholar 

  5. Edgar, R.C., Search and clustering orders of magnitude faster than BLAST, Bioinform., 2010, vol. 26, pp. 2460–2461.

    Article  CAS  Google Scholar 

  6. Egorov, A.V. and Ivanov, M.K., Hydrocarbon gases in sediments and mud breccias from the central and eastern part of the Mediterranean Ridge, Geo-Mar. Lett., 1998, vol. 18, pp. 127–138.

    Article  CAS  Google Scholar 

  7. Frey, B., Rime, T., Phillips, M., Stierli, B., Hajdas, I., Widmer, F., and Hartmann, M., Microbial diversity in European alpine permafrost and active layers, FEMS Microbiol. Ecol., 2016, vol. 92. p. fiw018.

    Article  PubMed  Google Scholar 

  8. Gohl, D., Gohl, D.M., MacLean, A., Hauge, A., Becker, A., Walek, D., and Beckman, K.B., An optimized protocol for high-throughput amplicon-based microbiome profiling, Protocol Exchange, Epub a head of print 25 July 2016. https://doi.org/10.1038/protex.2016.030

  9. Grigorenko, Yu.N., Mirchink, I.M., Savchenko, V.I., Senin, B.V., and Suprunenko, O.I., Hydrocarbon potential of the Russian continental shelf: state and prospects of exploitation, Min. Res. Rossii; Ekonomika i Upravlenie, special issue “Mineral Resources of the Rusian Shelf,” Moscow, 2006, pp. 14–71.

  10. Hirayama, H., Fuse, H., Abe, M., Miyazaki, M., Nakamura, T., Nunoura, T., Furushima, Y., Yamamoto, H., and Takai, K., Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments, Int. J. Syst. Evol. Microbiol., 2012, vol. 63, pp. 1073–1082.

    Article  PubMed  Google Scholar 

  11. Hirayama, H., Takaki, Y., Abe, M., Imachi, H., Ikuta, T., Miyazaki, J., and Tasumi, E., Multispecies populations of methanotrophic Methyloprofundus and cultivation of a likely dominant species from the Iheya North deep-sea hydrothermal field, Appl. Environ. Microbiol., 2022, vol. 88, p. e0075821. https://neftegaz.ru/. https://www.globalmethane.org.

    Article  Google Scholar 

  12. Ivanov, M.V., Pimenov, N.V., Rusanov, I.U., and Lein, A.Yu., Microbial process of the methane cycle at the north-western shelf of the Black Sea, Estuar. Coast. Shelf Sci., 2002, vol. 54, pp. 589–599.

    Article  CAS  Google Scholar 

  13. Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, pp. 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knief, C., Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker, Front. Microbiol., 2015, vol. 6, p. 1346.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Knoblauch, C., Beer, C., Sosnin, A., Wagner, D., and Pfeiffer, E.-M., Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia, Global Change Biol., 2013, vol. 19, pp. 1160–1172.

    Article  Google Scholar 

  16. Lein, A.Yu, Rusanov, I.I., and Pimenov, N.V., Biogeochemical processes of the carbon and sulfur cycles in the Kara Sea, Geokhimiya, 1996, no. 11, pp. 1027–1044.

  17. Letunic, I. and Bork, P., Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation, Nucl. Acids Res., 2021, vol. 49, pp. W293–W296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lisitzin, A.P., Shevchenko, V.P., Vinogradov, M.E., Severina, O.V., Vavilova, V.V., and Mitzkevich, I.N., Particle fluxes in the Kara Sea and Ob and Yenisei estuaries, Oceanology, 1995, vol. 34, pp. 683‒693.

    Google Scholar 

  19. Magoc, T. and Salzberg, S.L., FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinform., 2011, vol. 27, pp. 2957–2963.

    Article  CAS  Google Scholar 

  20. Masella, A.P., Bartram, A.K., Truszkowski, J.M., Brown, D.G., and Neufeld, J.D., PANDAseq: paired-end assembler for Illumina sequences, BMC Bioinform., 2012, vol. 13, p. 31. https://neftegaz.ru/.

    Article  CAS  Google Scholar 

  21. Mosharov, S.A. and Mosharova, I.V., Comparative analysis of production and microbiological characteristics of the Kara and Chukchi seas, in Fizicheskie, geologicheskie i biologicheskie issledovaniya okeanov i morei (Physical, Geological, and Biological Investigation of Oceans and Seas), Nauch. Mir, 2010, c. 494–505.

  22. Pimenov, N.V., Savvichev, A.S., Rusanov, I.I., Lein, A.Yu., and Ivanov, M.V., Microbiological processes of the carbon and sulfur cycles at cold methane seeps of the North Atlantic, Microbiology (Moscow), 2000, vol. 69, pp. 709–721.

    Article  CAS  Google Scholar 

  23. Renaud, G., Stenzel, U., Maricic, T., Wiebe, V., and Kelso, J., deML: robust demultiplexing of Illumina sequences using a likelihood-based approach, Bioinform., 2015, vol. 31, pp. 770–772.

    Article  CAS  Google Scholar 

  24. Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F., VSEARCH: a versatile open source tool for metagenomics, PeerJ Preprints, 2016, vol. 4, p. e2409v1.

  25. Romantsov, T., Guan, Z., and Wood, J.M., Cardiolipin and the osmotic stress responses of bacteria, Biochim. Biophys. Acta (BBA) Biomembr., 2009, vol. 1788, pp. 2092–2100.

    Article  CAS  Google Scholar 

  26. Rusanov, I.I., Savvichev, A.S., Yusupov, S.K., Pimenov, N.V., and Ivanov, M.V., Production of exometabolites in the microbial oxidation of methane in marine ecosystems, Microbiology (Moscow), 1998, vol. 67, pp. 590–596.

    CAS  Google Scholar 

  27. Samad, M.S. and Bertilsson, S., Seasonal variation in abundance and diversity of bacterial methanotrophs in five temperate lakes, Front. Microbiol., 2017, vol. 8, p. 142.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Savvichev, A.S., Kadnikov, V.V., Kravchishina, M.D., Galkin, S.V., Novigatskii, A.N., Sigalevich, P.A., Merkel, A.Yu., Ravin, N.V., Pimenov, N.V., and Flint, M.V., Methane as an organic matter source and the trophic basis of a Laptev Sea cold seep microbial community, Geomicrobiol. J., 2018a, vol. 35, no. 5, pp. 1–13.

    Article  Google Scholar 

  29. Savvichev, A.S., Rusanov, I.I., Kadnikov, V.V., Beletskii, A.V., Ravin, N.V., and Pimenov, N.V., Microbial community composition and rates of the methane cycle microbial processes in the upper sediments of the Yamal sector of the southwestern Kara Sea, Microbiology (Moscow), 2018b, vol. 87, pp. 238–248.

    Article  CAS  Google Scholar 

  30. Shakhova, N.E. and Semiletov, I.P., Methane hydrate feedbacks, in Arctic Climate Feedbacks: Global Implications, Sommerkorn, M. and Hassol, S.J., Eds., WWF International Arctic Programme August, 2009, pp. 81–92.

    Google Scholar 

  31. Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D., and Gustafsson, O., Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf, Science, 2010, vol. 327, pp. 1246–1250.

    Article  CAS  PubMed  Google Scholar 

  32. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinform., 2014, vol. 30, pp. 1312–1313.

    Article  CAS  Google Scholar 

  33. Tavormina, P.L., Kellermann, M.Y., Antony, C.P., Tocheva, E.I., Dalleska, N.F., Jensen, A.J., Valentine, D.L., Hinrichs, K.-U., Jensen, G.J., Dubilier, N., and Orphan, V.J., Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti, Mol. Microbiol., 2017, vol. 103, pp. 242–252.

    Article  CAS  PubMed  Google Scholar 

  34. Tavormina, P.L., Ussler, W., and Orphan, V.J., Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American Margin, Appl. Environ. Microbiol., 2008, vol. 74, pp. 3985–3995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tikhonova, E.N., Kadnikov, V.V., Rusanov, I.I., and Pimenov, N.V., Structural and functional organization of methane filter in the Russian Arctic Seas upper sediment horizons, 2022, in press

  36. Tikhonova, E.N., Kadnikov, V.V., Rusanov, I.I., Beletsky, A.V., Zakharova, E.E., Samylina, O.S., Ravin, N.V., and Pimenov, N.V., Methane-oxidizing activity and phylogenetic diversity of aerobic methanotrophs in the Laptev Sea upper sediment horizons, Microbiology (Moscow), 2021, vol. 90, pp. 314–323.

    Article  CAS  Google Scholar 

  37. Toshchakov, S.V., Izotova, A.O., Vinogradova, E.N., Kachmazov, G.S., Tuaeva, A.Y., Abaev, V.T., Evteeva, M.A., Gunitseva, N.M., Korzhenkov, A.A., Elcheninov, A.G., Patrushev, M.V., and Kublanov, I.V., Culture-independent survey of thermophilic microbial communities of the North Caucasus, Biology, 2021, vol. 10, p. 1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, L., Yu, M., Liu, Y., Liu, J., Wu, Y., Li, L., Liu, J., Wang, M., and Zhang, X.-H., Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough, J. Mar. Systems, 2018, vol. 180, pp. 162–172.

    Article  Google Scholar 

  39. Yurganov, L.N. and Leifer I., Assessment of methane emission from some Arctic and subarctic regions by the IASI orbital interferometer data, Sovr. Prob. Distants. Zondir. Zemli iz Kosmosa, 2016, vol. 13, no. 3, pp. 173–183.

  40. Yurganov, L.N., Leifer, I., and Lund Myhre, C., Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data, Sovr. Prob. Distants. Zondir. Zemli iz Kosmosa, 2016, vol. 13, no. 2, pp. 107–119.

Download references

Funding

The work was partially supported by the Russian Foundation for Basic Research, grant no. A 20-04-00126 and by the State Assignment of the Research Center for Biotechnology, Russ. Acad. Sci. Sequencing and bioinformatic analysis of the pmoA genes was supported by the RF Ministry of Science and Higher Education (agreement no. 075-15-2019-1659 for development of the Kurchatov Center for Genomic Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Tikhonova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonova, E.N., Rusanov, I.I., Kadnikov, V.V. et al. Microbial Processes of Methane Oxidation at the Kara Sea Sites of Gas Prospecting. Microbiology 92, 171–182 (2023). https://doi.org/10.1134/S0026261722603268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722603268

Keywords:

Navigation