Skip to main content
Log in

A New Methanogenic, Hydrogenotrophic Archaeon from Spitsbergen Permafrost

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A new strain of methanogenic archaea, designated VTT, was isolated from a sample of Spitsbergen permafrost. The cells were nonmotile curved rods, 2.7–5.3 × 0.3 µm. The optimal conditions for growth were 20°C, pH 6.6, and NaCl concentrations 0.03–0.05 M. The H2/CO2 gas mixture was the only substrate used. In the presence of H2/CO2, growth was stimulated by addition of yeast extract or rumen fluid. Phylogenetic analysis of the 16S rRNA gene sequences indicated that strain VTT belonged to the genus Methanobacterium and was most closely related to M. lacus 17A1T (97.02% similarity). Comparison of the sequenced and assembled genome of strain VTT with the genomes of other members of this genus confirmed these results and revealed species-level differences. Our results indicate that this methanogenic isolate belongs to a new species of methanogenic archaea, for which the name Methanobacterium spitsbergense sp. nov. was proposed, with the type strain VTT (=VKM B-3566T = JCM 39284T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Borrel, G., Joblin, K., Guedon, A., Colombet, J., Tardy, V., Lehours, A.-C., and Fonty, G., Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, no. 7, pp. 1625–1629.

    Article  CAS  PubMed  Google Scholar 

  2. Bryant, M.P. and Boone, D.R., Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri, Int. J. Syst. Bacteriol., 1987, vol. 37, no. 2, pp. 169–170.

    Article  Google Scholar 

  3. Buongiorno, J., Herbert, L.C., Wehrmann, L.M., Michaud, A.B., Laufer, K., Røy, H., Jørgensen, B.B., Szynkiewicz, A., Faiia, A., Yeager, K.M., Schindler, K., and Lloyd, K.G., Complex microbial communities drive iron and sulfur cycling in Arctic fjord sediments, Appl. Environ. Microbiol., 2019, vol. 85, no. 14, р. e00949-19. https://doi.org/10.1128/AEM.00949-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cadillo-Quiroz, H., Bräuer, S.L., Goodson, N., Yavitt, J.B., and Zinder, S.H., Methanobacterium paludis sp. nov. and a novel strain of Methanobacterium lacus isolated from northern peatlands, Int. J. Syst. Evol. Microbiol., 2014, vol. 64, no. 5, pp. 1473–1480.

    Article  CAS  PubMed  Google Scholar 

  5. DeLong, E.F., Archaea in coastal marine environments, Proc. Natl. Acad. Sci. U. S. A., 1992, vol. 89, no. 12, pp. 5685–5689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Demidov, N.E., Karaevskaya, E.S., Verkulich, S.R., Nikulina, A.L., and Savatyugin, L.M., First results of permafrost monitoring on the cryospheric site of Russian Scientific Center on Spitsbergen (RSCS), Problemy Arktiki i Antarktiki, 2016, vol. 4, no. 110, pp. 67–79.

    Google Scholar 

  7. Garcia, J.L., Patel, B.K.C., and Ollivier, B., Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea, Anaerobe, 2000, vol. 6, no. 4, pp. 205–226.

    Article  CAS  PubMed  Google Scholar 

  8. Hansen, A.A., Herbert, R.A., Mikkelsen, K., and Jensen, L.L., Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway, Environ. Microbiol., 2007, vol. 9, pp. 2870–2884.

    Article  CAS  PubMed  Google Scholar 

  9. Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C.L., Schirrmeister, L., Grosse, G., Michaelson, G.J., Koven, C.D., O’Donnell, J.A., Elberling, B., Mishra, U., Camill, P., Yu, Z., et al., Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 2014, vol. 11, no. 23, pp. 6573–6593.

    Article  Google Scholar 

  10. Hultman, J., Waldrop, M.P., Mackelprang, R., David, M.M., McFarland, J., Blazewicz, S.J., Harden, J., Turetsky, M.R., McGuire, A.D., Shah, M.B., VerBerkmoes, N.C., Lee, L.H., Mavrommatis, K., and Jansson, J.K., Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes, Nature, 2015, vol. 521, no. 7551, pp. 208–212.

    Article  CAS  PubMed  Google Scholar 

  11. Humlum, O., Instanes, A., and Sollid, J.L., Permafrost in Svalbard: A review of research history, climatic background and engineering challenges, Polar Res., 2003, vol. 22, pp. 191–215.

    Article  Google Scholar 

  12. Hungate, R.E., Chapter IV. A roll tube method for cultivation of strict anaerobes, in Methods in Microbiology, 1969, pp. 117–132.

  13. Jørgensen, B.B., Laufer, K., Michaud, A.B., and Wehrmann, L.M., Biogeochemistry and microbiology of high Arctic marine sediment ecosystems—case study of Svalbard fjords, Limnol. Oceanogr., 2021, vol. 66, pp. S273–S292.

    Article  Google Scholar 

  14. Kadnikov, V.V., Mardanov, A.V., Beletsky, A.V., Ivasenko, D.A., Pimenov, N.V., Karnachuk, O.V., Ravin, N.V., and Frank, Y.A., Variability of microbial community composition of the Western Siberia underground thermal waters reservoir, Microbiology (Moscow), 2017, no. 6, vol. 86, pp. 765–772.

    Article  CAS  Google Scholar 

  15. Kallistova, A.U., Merkel, A.U., Tarnovetskiy, I.U., and Pimenov, N.V., Formation and oxidation of methane by prokaryotes, Microbiology (Moscow), 2017, vol. 86, no. 6, pp. 671‒691.

    Article  CAS  Google Scholar 

  16. Knoblauch, C., Jørgensen, B.B., and Harder, J., Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments, Appl. Environ. Microbiol., 1999, vol. 65, pp. 4230–4233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krivushin, K.V., Shcherbakova, V.A., Petrovskaya, L.E., and Rivkina, E.M., Methanobacterium veterum sp. nov., from ancient Siberian permafrost, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, no. 2, pp. 455–459.

    Article  CAS  PubMed  Google Scholar 

  18. Ma, K., Liu, X., and Dong, X., Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 325–329.

    Article  CAS  PubMed  Google Scholar 

  19. Marmur J., A procedure for the isolation of deoxyribonucleic acid from micro-organisms, J. Mol. Biol., 1961, vol. 3, no. 2, pp. 208–218.

    Article  CAS  Google Scholar 

  20. Oshurkova, V., Troshina, O., Trubitsyn, V., Ryzhmanova, Y., Bochkareva, O., and Shcherbakova, V., Characterization of Methanosarcina mazei JL01 isolated from holocene arctic permafrost and study of the archaeon cooperation with bacterium Sphaerochaeta associata GLS2T, The 1st Int. Electronic Conf. Microbiol., Basel Switzerland: MDPI, 2020, p. 4.

  21. Ran, Y., Li, X., Cheng, G., Zhang, T., Wu, Q., Jin, H., and Jin, R., Distribution of permafrost in China: an overview of existing permafrost maps, Permafr. Periglac. Process., 2012, vol. 23, no. 4, pp. 322–333.

    Article  Google Scholar 

  22. Rivkina, E., Petrovskaya, L., Vishnivetskaya, T., Krivushin, K., Shmakova, L., Tutukina, M., Meyers, A., and Kondrashov, F., Metagenomic analyses of the late Pleistocene permafrost—additional tools for reconstruction of environmental conditions, Biogeosciences, 2016, vol. 13, no. 7, pp. 2207–2219.

    Article  Google Scholar 

  23. Schirmack, J., Mangelsdorf, K., Ganzert, L., Sand, W., Hillebrand-Voiculescu, A., and Wagner, D., Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake, Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 522–527.

    Article  CAS  PubMed  Google Scholar 

  24. Schuur, E.A.G., McGuire, A.D., Schädel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., Olefeldt, D., Romanovsky, V.E., Schaefer, K., Turetsky, M.R., et al., Climate change and the permafrost carbon feedback, Nature, 2015, vol. 520 no. 7546, pp. 171–179.

    Article  CAS  PubMed  Google Scholar 

  25. Serrano, P., Hermelink, A., Lasch, P., de Vera, J.-P., Konig, N., Burckhardt, O., and Wagner, D., Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil, FEMS Microbiol. Ecol., 2015, vol. 91, p. fiv126.

    Article  Google Scholar 

  26. Shcherbakova, V.A., Chuvilskaya, N.A., Rivkina, E.M., Pecheritsyna, S.A., Laurinavichius, K.S., Suzina, N.E., Osipov, G.A., Lysenko, A.M., Gilichinsky, D.A., and Akimenko, V.K., Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov., Extremophiles, 2005, vol. 9 , no. 3, pp. 239–246.

    Article  CAS  PubMed  Google Scholar 

  27. Shcherbakova, V., Rivkina, E., Pecheritsyna, S., Laurinavichius, K., Suzina, N., and Gilichinsky, D., Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, no. 1, pp. 144–147.

    Article  CAS  PubMed  Google Scholar 

  28. Simankova, M.V., Kotsyurbenko, O.R., Lueders, T., Nozhevnikova, A.N., Wagner, B., Conrad, R., and Friedrich, M.W., Isolation and characterization of new strains of methanogens from cold terrestrial habitats, Syst. Appl. Microbiol., 2003, vol. 26, no. 2, pp. 312–318.

    Article  PubMed  Google Scholar 

  29. Singh, P., Singh, S.M., Singh, R.N., Naik, S., Roy, U., Srivastava, A., and Bölter, M., Bacterial communities in ancient permafrost profiles of Svalbard, Arctic, J. Basic Microbiol., 2017, vol. 57, no. 12, pp. 1018–1036.

    Article  CAS  PubMed  Google Scholar 

  30. Trubitsyn, V.E., Rhyzhmanova, Y.V., Zaharyuk, A.G., Oshurkova, V.I., Laurinavichius, K.S., Spirina, E.V., Shcherbakova, V.A., and Rivkina, E.M., Diversity of cultured prokaryotes in permafrost sediment samples of West Spitsbergen Island, Kriosfera Zemli, 2019, vol. 23, no. 6, pp. 37–46.

    Google Scholar 

  31. Trubitsyn, V., Rivkina, E., and Shcherbakova, V., Draft genome sequence of a methanogenic archaeon from West Spitsbergen permafrost, Microbiol. Resour. Announc., 2022, vol. 11. https://doi.org/10.1128/mra.00938-21

  32. Vishnivetskaya, T.A., Buongiorno, J., Bird, J., Krivu-shin, K., Spirina, E.V., Oshurkova, V., Shcherbakova, V.A., Wilson, G., Lloyd, K.G., and Rivkina, E.M., Methanogens in the Antarctic Dry Valley permafrost, FEMS Microbiol. Ecol., 2018, vol. 94, no. 8. https://doi.org/10.1093/femsec/fiy109

  33. Wagner, D. and Liebner, S., Methanogenesis in Arctic permafrost habitats, in Handbook of Hydrocarbon Microbiology: Microbial Interactions with Hydrocarbons, Oils, Fats and Related Hydrophobic Substrates and Products. Section B: The Microbiology of Production of Hydrocarbons, Lipids, Timmis, K.N., Ed., Springer, 2010, pp. 663–666.

  34. Wagner, D., Schirmack, J., Ganzert, L., Morozova, D., and Mangelsdorf, K., Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, pp. 2986–2991.

    Article  CAS  PubMed  Google Scholar 

  35. Xue, Y., Jonassen, I., Øvreås, L., and Taş, N., Metagenome-assembled genome distribution and key functionality highlight importance of aerobic metabolism in Svalbard permafrost, FEMS Microbiol. Ecol., 2020, vol. 96, no. 5, p. fiaa057.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (RFBR), grant no. 20-34-90087, and the Ministry of Science and Higher Education of the Russian Federation (Agreement no. 075-15-2021-1051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Trubitsyn.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubitsyn, V.E., Suzina, N.E., Rivkina, E.M. et al. A New Methanogenic, Hydrogenotrophic Archaeon from Spitsbergen Permafrost. Microbiology 92, 119–128 (2023). https://doi.org/10.1134/S0026261722603256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722603256

Keywords:

Navigation