Skip to main content
Log in

Pelosinus baikalensis sp. nov., an Iron-Reducing Bacterium Isolated from a Cold Freshwater Lake

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

An obligately anaerobic bacterium, strain Bkl1T, was isolated from an enrichment culture of iron-reducing bacteria (IRB) obtained from a sample of the bottom sediments of the cold freshwater Lake Baikal (Russia). Cells of the strain were Gram-stain-negative, motile, spore-forming straight rods (0.6–0.7 × 2.0–7.0 µm) with a fermentative metabolism. Strain Bkl1T grew in the temperature range from 7 to 38°C (optimum 20°C) and at pH 7.0–9.5 (optimum pH 7.6). The novel isolate was capable to reduce ferric citrate (FC), anthraquinone-2,6-disulfonate (AQDS) and Cr(VI) in the presence of lactate as carbon source. Ferrihydrite was not reduced in the absence of AQDS. Based on its 16S rRNA gene sequence, strain Bkl1T was affiliated to the family Sporomusaceae and, more specifically, to the genus Pelosinus. The strain was most closely related to Pelosinus fermentans DSM 17108T (99.2%) and P. propionicus DSM 13327T (99.1%). Genome relatedness indexes revealed that the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain Bkl1T and its closest phylogenomic relative (P. fermentans DSM 17108T) were 93.3 and 54.2%, respectively. The G + C content of the genome of strain Bkl1T was 39.1 mol % and its size was 5.32 Mb with 4939 protein-coding genes. The predominant fatty acids in cell walls were С15:1, С17:1, and С16:1. Based on the phylogenetic analyses and phenotypic differences between the novel isolate and type strains of the genus Pelosinus, strain Bkl1T (=VKM B-3511Т = JCM 39258T) is proposed to represent a novel species Pelosinus baikalensis sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Andrews, S., FastQC: a quality control tool for high throughput sequence data, 2010. https://github.com/s-andrews/FastQC.

  2. Arkin, A., Cottingham, R., Henry, C., Harris, N., et al., KBase: The United States Department of Energy Systems Biology Knowledgebase, Nature Biotechnology, 2018, vol. 36, pp. 566−569. https://doi.org/10.1038/nbt.4163

  3. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., et al., SPAdes: a new genome assembly algorithm and its applications to single cell sequencing, J. Comput. Biol., 2012, vol. 19, pp. 455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benson, D.A., Boguski, M.S., Lipman, D.J., Ostell, J., Ouellette, B.F., GenBank, Nucleic Acids Res., 1998, vol. 26, pp. 1−7. https://doi.org/10.1093/nar/26.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boga, H.I., Ji, R., Ludwig, W., Brune, A., Sporotalea propionica gen. nov, sp. nov., a hydrogen-oxidizing, oxigen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite, Arch. Microbiol., 2007, vol. 187, pp. 15−27. https://doi.org/10.1007/s00203-006-0168-7

    Article  CAS  PubMed  Google Scholar 

  6. Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, pp. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bowen De León, K., Utturkar, S.M., Camilleri, L.B., Elias, D.A., Arkin, A.P., Fields, M.W., Brown, S.D., Wall, J.D., Complete genome sequence of Pelosinus fermentans JBW45, a member of a remarkably competitive group of Negativicutes in the Firmicutes phylum, Genome Announcements, 2015, vol. 3, p. е01090-15.https://doi.org/10.1128/genomeA.01090-15

  8. Brown, S.D., Podar, M., Klingeman, D.M., Johnson, C.M., Yang, Z.K., Utturkar, S.M., Land, M.L., Mosher, J.J., Hurt, R.A., Phelps, T.J., Palumbo, A.V., Arkin, A.P., Hazen, T.C., and Elias, D.A., Draft genome sequences for two metal-reducing Pelosinus fermentans strains isolated from a Cr(VI)-contaminated site and for type strain R7, J. Bacteriol., 2012, vol. 194, p. 5147−5148. https://doi.org/10.1128/JB.01174-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cervantes, F.J., van der Velde, S., Lettinda, G., and Field, J.A., Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia, FEMS Microbiol. Ecol., 2000, vol. 34, pp. 161–171. https://doi.org/10.1111/j.1574-6941.2000.tb00766.x

    Article  CAS  PubMed  Google Scholar 

  10. Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D.R., da Costa, M.S., Rooney, A.P., Yi, H., Xue-Wei Xu, De Meyer, S., and Trujillo, M.E., Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes, Int. J. Syst. Evol. Microbiol., 2018, vol. 68, pp. 461−466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  11. Cline, J.D., Spectrophotometric determination of hydrogen sulphide in natural water, Limnol Oceanogr., 1969, vol. 14, pp. 444–458. https://doi.org/10.4319/lo.1969.14.3.0454

    Article  Google Scholar 

  12. Griess-Romijn-van Eck, Physiological and chemical tests for drinking water, NEN 1056, IY–2, 1966, Nederlandse Normalisatie Instituut Rijswijk.

    Google Scholar 

  13. Han, R., Geller, J.T., Yang, L., Brodie, E.L., Chakrabor-ty, R., Larsen, J.T., and Beller, H.R., Physiological and transcriptional studies of Cr(VI) reduction under aerobic and denitrifying conditions by an aquifer-derived pseudomonad, Environ. Sci. Technol., 2010, vol. 44, pp. 7491−7497. https://doi.org/10.1021/es101152r

  14. Hungate, R.E., A roll tube method for cultivation of strict anaerobes, in Methods in Microbiolology, Norris, R. and Ribbons, R.W., Eds., NY: Academic, 1969, vol. 13, pp. 117−132.

    Google Scholar 

  15. Kappler, A., Benz, M., Schink, B., and Brune, A., Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment, FEMS Microbiol. Ecol., 2004, vol. 47, p. 85092. https://doi.org/10.1016/S0168-6496(03)00245-9

    Article  CAS  Google Scholar 

  16. Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870−1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J.P., Gorby, Y.A., and Goodwin, S., Geobacter metallireducens gen. nov., sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals, Arch. Microbiol., 1993, vol. 159, pp. 336–344. https://doi.org/10.1007/BF00290916

    Article  CAS  PubMed  Google Scholar 

  18. Marmur, J., A procedure for isolation of deoxyribonucleic acid from microorganism, J. Mol. Biol., 1961, vol. 3, pp. 208−218.

    Article  CAS  Google Scholar 

  19. Moe, W.M., Stebbing, R.E., Rao, J.U., Bowman, K.S., Nobre, M.F., da Costa, M.S., and Rainey, F.A., Pelosinus defluvii sp. nov., isolated from chlorinated solvent-contaminated groundwater, emended description of the genus Pelosinus and transfer of Sporotalea propionica to Pelosinus propionicus comb. nov., Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 1369−1376. https://doi.org/10.1099/ijs0.033753-0

    Article  CAS  PubMed  Google Scholar 

  20. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G., CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res., 2015, vol. 25, pp. 1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Price, M.N., Dehal, P.S., and Arkin, A.P., FastTree 2— Approximately Maximum-Likelihood Trees for Large Alignments, PLoS One, 2010, vol. 5, p. е9490. https://doi.org/10.1371/journal.pone.0009490

  22. Ray, A.E., Connon, S.A., Neal, A.L., Fujita, Y., Cummings, D.E., Ingram, J.C., and Magnuson, T.S., Metal transformation by a novel Pelosinus isolate from a subsurface environment, Front. Microbiol., 2018, vol. 9, p. 1689. https://doi.org/10.3389/fmicd.2018.01689

    Article  PubMed  PubMed Central  Google Scholar 

  23. Reynolds, E.S., The use of lead citrate at high pH as an electron opaque stain in electron microscopy, J. Cell. Biol., 1963, vol. 17, pp. 208−212. https://doi.org/10.1083/jcb.17.1.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Richter, M., Rosselló-Móra, R., Glöckner, F.O., and Peplies, J., JSpeciesWS: a web server for prokaryotic species circumscription based onpairwise genome comparison, Bioinformatics, 2015, vol. 5, pp. 929–931. https://doi.org/10.1093/bioinformatics/btv681

    Article  CAS  Google Scholar 

  25. Shelobolina, E.S., Nevin, K.P., Blakeney-Hayward, J.D., Johnsen, C.V., Plaia, T.W., Kraden, P., Woodard, T., Holmes, D.E., Gaw VanPraagh, C., and Lovley, D.R., Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 126−135. https://doi.org/10.1099/ijs.0.64221-0

    Article  CAS  PubMed  Google Scholar 

  26. Slobodkina, G.B., Merkel, A.Y., Novikov, A.A., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., (Pelomicrobium methylotrophicum gen. nov., sp. nov. a moderately thermophilic, facultatively anaerobic, lithoautotrophic and methylotrophic bacterium isolated from a terrestrial mud volcano, Extremophiles, 2020, vol. 24, pp. 177−185. https://doi.org/10.1007/s00792-019-01145-0

    Article  CAS  PubMed  Google Scholar 

  27. Smibert, R. and Krieg, N., Phenotypic characterization, in: Methods for General and Molecular Bacteriology, Gerhardt, P., Murray, R., Wood, W., and Krieg, N., Eds., Washington: Amer. Soc. Microbiol., 1994, pp. 607–654.

    Google Scholar 

  28. Talavera, G. and Castresana, J., Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments, Systematic Biology, 2007, vol. 56, pp. 564−577. https://doi.org/10.1080/10635150701472164

    Article  CAS  PubMed  Google Scholar 

  29. Wolin, E.A., Wolin, M.J., and Wolfe, R.S. Formation of methane by bacterial extracts, J. Biol. Chem., 1963, vol. 238, pp. 2882−2886

    Article  CAS  PubMed  Google Scholar 

  30. Zemskaya, T.I., Sitnikova, T.Y., Kiyashko, S.I., Kalmychkov, G.V., Pogodaeva, T.V., Mekhanikova, I.V., Naumo-va, T.V., Shubenkova, O.V., Chernitsina, S.M., Kotsar, O.V., Chernyaev, E.S., and Khlystov, O.M., Faunal communities at sites of gas- and oil-bearing fluids in Lake Baikal, Geo-Mar. Lett., 2012, vol. 32, pp. 437–451.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to T.I. Zemskaya (Laboratory of Carbohydrate Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences) and to O.P. Dagurova (Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences) for providing Lake Baikal bottom sediments.

Funding

This work was supported by the Russian Science Foundation (project no. 22-24-00518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zakharyuk.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

DATA AVAILABILITY

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain Bkl1T is MW805760. The whole genome sequence of strain Bkl1T is available at the NCBI (www.ncbi.nlm.nih.gov.) under accession number NZ_JAJHJB000000000.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharyuk, A.G., Kopitsyn, D.S., Suzina, N.E. et al. Pelosinus baikalensis sp. nov., an Iron-Reducing Bacterium Isolated from a Cold Freshwater Lake. Microbiology 92, 137–145 (2023). https://doi.org/10.1134/S0026261722602913

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722602913

Keywords:

Navigation