Skip to main content
Log in

On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The phenomenon of photosynthetic adaptation of cyanobacteria to far-red light (FRL; 700−750 nm) is closely related to such basic themes as: phototrophy, microbial ecology, and diversity of bacteria. In applied terms, this bioenergetic strategy is essential for biotechnology, with a perspective to possess additional photosynthetic energy. The majority of cyanobacteria is known to use 400−700 nm light, excited state being channeled from light-harvesting complex to reaction centers of two photosystems containing chlorophyll (Chl) a showing red maxima at ~700 nm. After the isolation of first strains producing Chls d and f it became clear that cyanobacteria can also use FRL. Large amount of data has been obtained on cyanobacteria which constitutively produce Chl d as well as on those strains which produce Chl f or Chl f/Chl d during FRL photoacclimation (FaRLiP). Inclusion of these pigments in photosynthetic apparatus, particularly using FaRLiP mechanisms, augments the adaptive potential of cyanobacteria and expands their distribution range. The review provides evidence on such aspects as: photosynthetic apparatus containing Chl d or Chld/Chl f; the FaRLiP gene cluster; phylogeny of cyanobacteria which constitutively or inducibly produce red-shifted chlorophylls; the use of chlorophylls in chemotaxonomy of cyanobacteria, and application of this character in nomenclature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Airs, R.L., Temperton, B., Sambles, C., Farnham, G., Skill, S.C., and Llewellyn, C.A., Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation, FEBS Lett., 2014, vol. 588, pp. 3770‒3777.

    Article  CAS  Google Scholar 

  2. Akimoto, S., Shinoda, T., Chen, M., Allakhverdiev, S.I., and Tomo, T., Energy transfer in the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, analyzed by time-resolved fluorescence spectroscopies, Photosynth. Res., 2015, vol. 125, pp. 115–122.

    Article  CAS  Google Scholar 

  3. Akiyama, M., Miyashita, H., Kise, H., Watanabe, T., Mimuro, M., Miyachi, S., and Kobayashi, M., Quest for minor but key chlorophyll molecules in photosynthetic reaction centers—unusual pigment composition in the reaction centers of the chlorophyll d dominated cyanobacterium Acaryochloris marina, Photosynth. Res., 2002, vol. 74, pp. 97–107.

    Article  CAS  Google Scholar 

  4. Akutsu, S., Fujinuma, D., Furukawa, H., Watanabe, T., Ohnishi-Kameyama, M., Ono, S., Ohkubo, S., Miyashita, H., and Kobayashi, M., Pigment analysis of a chlorophyll f-containing cyanobacterium strain KC1 isolated from Lake Biwa, Photomed. Photobiol., 2011, vol. 33, pp. 35–40.

    CAS  Google Scholar 

  5. Al-Bader, D., Eliyas, M., Rayan, R., and Radwan, S., Subsurface associations of Acaryochloris-related picocyanobacteria with oil-utilizing bacteria in the Arabian Gulf water body: promising consortia in oil sediment bioremediation, Microb. Ecol., 2013, vol. 65, pp. 555–565.

    Article  CAS  Google Scholar 

  6. Allakhverdiev, S.I., Kreslavski, V.D., Zharmukhamedov, S.K., Voloshin, R.A., Korol’kova, D.V., Tomo, T., and Shen, J.R., Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria, Biochemistry (Moscow), 2016, vol. 81, pp. 201–212.

    CAS  Google Scholar 

  7. Allen J.F., Protein phosphorylation in regulation of photosynthesis, Biochim. Biophys. Acta, 1992, vol. 1098, pp. 275‒335.

    Article  CAS  Google Scholar 

  8. Amesz, J. and Neerken, S., Excitation energy trapping in anoxygenic photosynthetic bacteria, Photosynth. Res., 2002, vol. 73, pp. 73‒81.

    Article  CAS  Google Scholar 

  9. Antonaru, L.A., Cardona, T., Larkum, A.W.D., and Nürnberg, D.J., Global distribution of a chlorophyll f cyanobacterial marker, ISME J., 2020, vol. 14, pp. 2275–2287. https://doi.org/10.1038/s41396-020-0670-y

    Article  CAS  Google Scholar 

  10. Averina, S., Polyakova, E., Senatskaya, E., and Pinevich, A., A new cyanobacterial genus Altericista and three species Altericista lacusladogae sp. nov., Altericista violacea sp. nov., and Altericista variichlora sp. nov., described using a polyphasic approach, J. Phycol., 2021, vol. 57, pp. 1517‒1529.

    Article  CAS  Google Scholar 

  11. Averina, S.G., Velichko, N.V., Pinevich, A.A., Senat-skaya, E.V., and Pinevich, A.V., Non-a chlorophylls in cyanobacteria, Photosynthetica, 2019, vol. 57, pp. 1109‒1118.

    Article  CAS  Google Scholar 

  12. Averina, S., Velichko, N., Senatskaya, E., and Pinevich, A., Far-red photoadaptations in aquatic cyanobacteria, Hydrobiologia, 2018, vol. 813, pp. 1‒17.

    Article  CAS  Google Scholar 

  13. Badshah, S.L., Mabkhot, Y., and Al-Showiman, S.S., Photosynthesis at the far-red region of the spectrum in Acaryochloris marina, Biol. Res., 2017, vol. 50, p. 16. https://doi.org/10.1186/s40659-017-0120-0

    Article  CAS  Google Scholar 

  14. Bar-Zvi, S., Lahav, A., Harris, D., Niedzwiedzki, D.M., Blankenship, R.E., and Adir, N., Structural heterogeneity leads to functional homogeneity in A. marina phycocyanin, Biochim. Biophys. Acta Bioenerg., 2018, vol. 1859, pp. 544‒553.

    Article  CAS  Google Scholar 

  15. Bauer, C.E., Bollivar, D.W., and Suzuki, J.Y., Genetic analyses of photopigment biosynthesis in eubacteria: a guiding light for algae and plants, J. Bacteriol., 1993, vol. 175, pp. 3919‒3925.

    Article  CAS  Google Scholar 

  16. Behrendt, L., Brejnrod, A.S., Schliep, M., Sørensen, S.J., Larkum, A.W.D., and Kühl, M., Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium, ISME J., 2015, vol. 9, pp. 2108–2111.

    Article  CAS  Google Scholar 

  17. Behrendt, L., Larkum, A.W.D., Norman, A., Qvortrup, R., Chen, M., Ralph, P., Sørensen, S.J., Trampe, E., and Kühl, M., Endolithic chlorophyll d-containing phototrophs, ISME J., 2011, vol. 5, pp. 1072–1076.

    Article  CAS  Google Scholar 

  18. Behrendt, L., Nielsen, J.L., Sørensen, S.J., Larkum, A.W.D., Winther, J.R., and Kühl, M., Rapid TaqMan-based quantification of chlorophyll d-containing cyanobacteria in the genus Acaryochloris, Appl. Environ. Microbiol., 2014, vol. 80, pp. 3244–3249.

    Article  Google Scholar 

  19. Behrendt, L., Staal, M., Cristescu, S.M., Harren, F.J.M., Schliep, M., Larkum, A.W.D., and Kühl, M., Reactive oxygen production induced by near-infrared radiation in three strains of the Chl d-containing cyanobacterium Acaryochloris marina, F1000Research, 2013, vol. 2, p. 44. https://doi.org/10.12688/f1000research.2-44.v.2

    Article  Google Scholar 

  20. Blankenship, R.E. and Chen, M., Spectral expansion and antenna reduction can enhance photosynthesis for energy production, Curr. Opin. Chem. Biol., 2013, vol. 17, pp. 457‒461.

    Article  CAS  Google Scholar 

  21. Bryant, D.A., Garcia-Costas, A.M., Maresca, J.A., Chew, A.G.M., Klatt, C.G., Bateson, M.M., Tallon, L.J., Hostetler, J., Nelson, W.C., Heidelberg, J.F., and Ward, D.W., Candidatus Chloracidobacterium thermofilum: an aerobic phototrophic acidobacterium, Science, 2007, vol. 317, pp. 523‒526.

    Article  CAS  Google Scholar 

  22. Bryant, D.A., Shen, G., Turner, G.M., Soulier, N., Laremore, T.N., and Ho, M.-Y., Far-red light allophycocyanin subunits play a role in chlorophyll d accumulation in far-red light, Photosynth. Res., 2020, vol. 143, pp. 81–95.

    Article  CAS  Google Scholar 

  23. Burger-Wiersma, T., Stal, L., and Mur, L.R., Prochlorothrix hollandica gen. nov., sp. nov., a filamentous oxygenic photoautotrophic prokaryote containing chlorophylls a and b: assignment to Prochlorotrichaceae fam. nov. and order Prochlorotrichales Florenzano, Balloni, and Materassi 1986, with emendation of the ordinal description, Int. J. Syst. Evol. Microbiol., 1989, vol. 39, pp. 250‒257.

    Google Scholar 

  24. Cardona, T., Murray, J.W., and Rutherford, A.W., Origin and evolution of water oxidation before the last common ancestor of the cyanobacteria, Mol. Biol. Evol., 2015, vol. 32, pp. 1310‒1328.

    Article  CAS  Google Scholar 

  25. Castenholz, R.W., General characteristics of the cyanobacteria, in Bergey’s Manual of Systematics of Archaea and Bacteria, DeVos, P., Eds., Hobolken, NJ: Wiley, 2015. https://doi.org/10.1002/9781118960608.cbm00019

    Book  Google Scholar 

  26. Chen, M. and Blankenship, R.E., Expanding the solar spectrum used by photosynthesis, Trends Plant Sci., 2011, vol. 16, pp. 427‒431.

    Article  CAS  Google Scholar 

  27. Chen, M., Bibby, T.S., Nield, J., Larkum, A.W.D., and Barber, J., Iron deficiency induces a chlorophyll d-binding Pcb antenna system around photosystem I in Acaryochloris marina, Biochim. Biophys. Acta, 2005a, vol. 1708, pp. 367–374.

    Article  CAS  Google Scholar 

  28. Chen, M., Bibby, T.S., Nield, J., Larkum, A.W.D., and Barber, J., Structure of a large photosystem II supercomplex from Acaryochloris marina, FEBS Letters, 2005b, vol. 579, pp. 306–1310.

    Article  Google Scholar 

  29. Chen, M., Floetenmeyer, M., and Bibby, T., Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina, FEBS Lett., 2009, vol. 583, pp. 2535‒2539.

    Article  CAS  Google Scholar 

  30. Chen, M., Hernandez-Prieto, M.A., Loughlin, P.C., Li, Y., and Willows, R.D., Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptive proteomic shifts under different light conditions, Genomics, 2019, vol. 20, p. 207. https://doi.org/10.1186/s12864-019-5587-3

    Article  Google Scholar 

  31. Chen, M., Hiller, R.G., Howe, C.J., and Larkum, A.W.D., Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light-harvesting systems, Mol. Biol. Evol., 2005c, vol. 22, pp. 21–28.

    Article  Google Scholar 

  32. Chen, M., Li, Y., Birch, D., and Willows, R.D., A cyanobacterium that contains chlorophyll f—a red-absorbing photopigment, FEBS Lett., 2012, vol. 586, pp. 3249–3254.

    Article  CAS  Google Scholar 

  33. Chen, M., Schliep, M., Willows, R.D., Cai, Z.L., Neilan, B.A., and Scheer, H., A red-shifted chlorophyll, Science, 2010, vol. 329, pp. 1318–1319.

    Article  CAS  Google Scholar 

  34. Chen, M., Telfer, A., Lin, S., Pascal, A., Larkum, A.W.D., Barber, J., and Blankenship, R.E., The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina, Photochem. Photobiol. Sci., 2005d, vol. 4, pp. 1060–1064.

    Article  CAS  Google Scholar 

  35. Chen, M., Zhang, Y., and Blankenship, R.E., Nomenclature for membrane bound light harvesting complexes of cyanobacteria, Photosynth. Res., 2008, vol. 95, pp. 147–154.

    Article  CAS  Google Scholar 

  36. Cherepanov, D.A., Shelaev, I.V., Gostev, F.E., Aybush, A.V., Mamedov, M.D., Shen, G., Nad-tochenko, V.A., Bryant, D.A., Semenov, A.Y., and Golbeck, J.H., Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521, Biochim. Biophys. Acta Bioenerg., 2020, vol. 1861, p. 148184. https://doi.org/10.1016/j.bbabio.2020.148184

    Article  CAS  Google Scholar 

  37. Chisholm, S.W., Frankel, S.L., Goericke, R., Olson, J.R., Palenik, B., Waterbury, J.B., West-Johnsrud, L., and Zettler, E.R., Prochlorococcus marinus nov. gen., nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b, Arch. Microbiol., 1992, vol. 157, pp. 297–300.

    Article  CAS  Google Scholar 

  38. Deisenhofer, J., Michel, H., and Huber, R., The structural basis of photosynthetic light reactions in bacteria, Trends Biochem. Sci., 1985, vol. 10, pp. 243‒248.

    Article  CAS  Google Scholar 

  39. de los Rios, A., Grube, M., Sancho, L.G., and Ascaso, C., Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks, FEMS Microb. Ecol., 2007, vol. 59, pp. 386–395.

    Article  CAS  Google Scholar 

  40. Drews, G. and Niederman, R.A., Membrane biogenesis in anoxygenic photosynthetic prokaryotes, Photosynth. Res., 2002, vol. 73, pp. 87‒94.

    Article  CAS  Google Scholar 

  41. Fleming, E.D. and Prufert-Bebout, L., Characterization of cyanobacterial communities from high-elevation lakes in the Bolivian Andes, J. Geophys. Res., 2010, vol. 115, p. 00D07. https://doi.org/10.1029/2008JG000817

  42. French, C.S., The chlorophyll in vivo and in vitro, Encyclopedia of Plant Physiology, Ruhland, W., Ed., Berlin: Springer, 1960, vol. 5, Pt. 1, pp. 252–297.

    Google Scholar 

  43. Friedrich, T. and Schmitt, F.J., Red-shifted and red chlorophylls in photosystems: entropy as a driving force for uphill energy transfer, in Photosynthesis: Molecular Approaches to Solar Energy Conversion. Advances in Photosynthesis and Respiration, Shen, J.R. et al., Eds., Cham: Springer, 2021, vol. 47. https://doi.org/10.1007/978-3-030-67407-6_9

  44. Fukusumi, T., Matsuda, K., Mizoguchi, T., Miyatake, T., Ito, S., Ikeda, T., Tamiaki, H., and Oba, T., Non-enzymatic conversion of chlorophyll-a into chlorophyll-d in vitro: a model oxidation pathway for chlorophyll-d biosynthesis, FEBS Lett., 2012, vol. 586, pp. 2338–2341.

    Article  CAS  Google Scholar 

  45. Gan, F. and Bryant, D.A., Adaptive and acclimative responses of cyanobacteria to far-red light, Environ. Microbiol., 2015, vol. 17, pp. 3450–3465.

    Article  CAS  Google Scholar 

  46. Gan, F., Shen, G., and Bryant, D., Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria, Life (Basel), 2015, vol. 5, pp. 4–24.

    Article  CAS  Google Scholar 

  47. Gan, F., Zhang, S., Rockwell, N.C., Martin, S.S., Lagarias, J.C., and Bryant, D.A., Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light, Science, 2014, vol. 345, pp. 1312–1317.

    Article  CAS  Google Scholar 

  48. Gisriel, C.J., Cardona, T., Bryant, D.A., and Brudvig, C.W., Molecular evolution of far-red light-acclimated photosystem II, Microorganisms, 2022, vol. 10, p. 1270. https://doi.org/10.3390/microorganisms10071270

    Article  CAS  Google Scholar 

  49. Gisriel, C.J., Shen, G., Ho, M.-Y., Kurashov, V., Flesher, D.A., Wang, J., Armstrong, W.H., Golbeck, J.H., Gunner, M.R., Vinyard, D.J., Debus, R.J., Brudvig, G.W., and Bryant, D.A., Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red-light reveals the functions of chlorophylls d and f, J. Biol. Chem., 2021, vol. 298, p. 101424. https://doi.org/10.1016/j.jbc.2021.101424

  50. Gisriel, C., Shen, G., Kurashov, V., Ho, M.-Y., Zhang, S., Williams, D., Golbeck, J.H., Fromme, P., and Bryant, D.A., The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis, Sci. Adv., 2020, vol. 6, p. aay6415. https://doi.org/10.1126/sciadv.aay6415

    Article  CAS  Google Scholar 

  51. Glazer, A.N. and Bryant, D.A., Allophycocyanin B (λmax 671, 618 nm)—a new cyanobacterial phycobiliprotein, Arch. Mikrobiol., 1975, vol. 104, pp. 15–22.

    Article  CAS  Google Scholar 

  52. Gómez-Lojero, C., Leyva-Castillo, L.E., Herrera-Salgado, P., Barrera-Rojas, J., Ríos-Castro, E., and Gutiérrez-Cirlos, E.B., Leptolyngbya CCM 4, a cyanobacterium with far-red photoacclimation from Cuatro Ciénegas Basin, México, Photosynthetica, 2018, vol. 56, pp. 342–353.

    Article  Google Scholar 

  53. Gorka, M., Baldansuren, A., Malnati, A., Gruszecki, E., Golbeck, J.H., and Lakshmi, K.V., Shedding light on primary donors in photosynthetic reaction centers, Front. Microbiol., 2021, vol. 12, p. 735666. https://doi.org/10.3389/fmicb.2021.735666

    Article  Google Scholar 

  54. Grossman, A.R., Schaefer, M.R., Chiang, G.G., and Collier, J.L., The phycobilisome, a light-harvesting complex responsive to environmental conditions, Microbiol. Rev., 1993, vol. 57, pp. 725‒749.

    Article  CAS  Google Scholar 

  55. Hamaguchi, T., Kawakami, K., Shinzawa-Itoh, K., Inoue-Kasino, N., Itoh, S., Ifuku, K., Yamashita, E., Maeda, K., Yonekura, K., and Kasino, Y., Structure of the far-red light utilizing photosystem I of Acaryochloris marina, Nat. Commun., 2021, vol. 12, p. 2333. https://doi.org/10.1038/s41467-021-22502-8

    Article  CAS  Google Scholar 

  56. Hastings, H., Makita, H., Agarwala, N., Rohani, L., Shen, G., and Bryant, D.A., Fourier transform visible and infrared difference spectroscopy for the study of P700 in photosystem I from Fischerella thermalis PCC 7521 cells grown under white light and far-red light: Evidence that the A−1 cofactor is chlorophyll f, Biochim. Biophys. Acta–Bioenerg., 2019, vol. 1860, pp. 452‒460.

    Article  CAS  Google Scholar 

  57. Herrera-Salgado, P., Leyva-Castillo, L.E., Ríos-Castro, E., and Gómez-Lojero, C., Complementary chromatic and far-red photoacclimations in Synechococcus ATCC 29403 (PCC 7335). I: The phycobilisomes, a proteomic approach, Photosynth. Res., 2018, vol. 138, pp. 39–56.

    Article  CAS  Google Scholar 

  58. Holt, A.S., Further evidence of the relation between 2-desvinyl-2-formyl-chlorophyll a and d, Can. J. Bot., 1961, vol. 39, pp. 327–331.

    Article  CAS  Google Scholar 

  59. Ho, M.-Y. and Bryant, D.A., Global transcriptional profiling of the cyanobacerium Chlorogloeopsis fritschii PCC 9212 in far-red light: insights into the regulation of chlorophyll d synthesis, Front. Microbiol., 2019, vol. 10, p. 465. https://doi.org/10.3389/fmicb.2019.00465

    Article  Google Scholar 

  60. Ho, M.-Y., Gan, F., Shen, G., and Bryant, D.A., Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II. Characterization of phycobiliproteins produced during acclimation to far-red light, Photosynth. Res., 2017a, vol. 131, pp. 187‒202.

    Article  CAS  Google Scholar 

  61. Ho, M.-Y., Gan, F., Shen, G., Zhao, C., and Bryant, D.A., Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. I. Regulation of FaRLiP gene expression, Photosynth. Res., 2017b, vol. 131, pp. 173‒186.

    Article  CAS  Google Scholar 

  62. Ho, M.-Y., Shen, G., Canniffe, D.P., Zhao, C., and Bryant, D.A., Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II, Science, 2016, vol. 353, p. aaf9178. https://doi.org/10.1126/science.aaf.9178

    Article  Google Scholar 

  63. Hunter, C.N., van Grondelle, R., and Olsen, J.D., Photosynthetic antenna proteins: 100 ps before photochemistry starts, Trends Biochem. Sci., 1989, vol. 14, pp. 72‒76.

    Article  CAS  Google Scholar 

  64. Hu, Q., Marquardt, J., Iwasaki, I., Miyashita, H., Kurano, N., Mörschel, E., and Miyachi, S., Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina, Biochim. Biophys. Acta, 1999, vol. 1412, pp. 250–261.

    Article  CAS  Google Scholar 

  65. Hu, Q., Miyashita, H., Iwasaki, I., Kurano, N., Miyachi, S., Iwaki, M., and Itoh, S., A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis, Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, pp. 13319–13323.

    Article  CAS  Google Scholar 

  66. Itoh, S., Mino, H., Itoh, K., Shigenaga, T., Uzumaki, T., and Iwaki, M., Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina, Biochemistry, 2007, vol. 46, pp. 12473–12481.

    Article  CAS  Google Scholar 

  67. Itoh, S., Ohno, T., Noji, T., Yamakawa, H., Komatsu, H., Wada, K., Kobayashi, M., and Miyashita, Y., Harvesting far-red light by chlorophyll f in photosystems I and II of unicellular cyanobacterium strain KC1, Plant Cell Physiol., 2015, vol. 56, pp. 2024–2034.

    Article  CAS  Google Scholar 

  68. Judd, M., Mortona, J., Nürnberg, D., Fantuzzi, A., Rutherford, A.W., Purchase, R., Cox, N., and Krausz, E., The primary donor of far-red photosystem II: ChlD1 or PD2?, Biochim. Biophys. Acta—Bioenerg., 2020, vol. 1861, p. 1482. https://doi.org/10.1016/j.bbabio.2020.148248

  69. Kashiyama, Y., Miyashita, H., Ohkubo, S., Ogawa, N.O., Chikaraishi, Y., Takano, Y., Suga, H., Toyofuku, T., Nomaki, H., Kitazato, H., Nagata, T., and Ohkouchi, K., Evidence for global chlorophyll d, Science, 2008, vol. 321, pp. 658.

    Article  CAS  Google Scholar 

  70. Kiang, N.Y., Swingley, W.D., Gautam, D., Broddrick, J.T., Repeta, D.J., Stolz, J.F., Blankenship, R.E., Wolf, B.M., Detweiler, A.M., Miller, K.A., Schladweiler, J.J., Lindeman, R., and Parenteau, M.N., Discovery of chlorophyll d: isolation and characterization of a far-red cyanobacterium from the original site of Manning and Strain (1943) at Moss Beach, California, Microorganisms, 2022, vol. 10, p. 819. https://doi.org/10.3390microorganisms10040819

  71. Kimura, A., Kitoh-Nishioka, H., Aota, T., Hamaguchi, T., Yonekura, K., Kawakami, K., Shinzawa-Itoh, K., Inoue-Kasino, N., Ifuku, K., Yamasita, E., Kasino, Y., and Itoh, S., Theoretical model of the far-red-light-adapted photosystem I reaction center of cyanobacterium Acaryochloris marina using chlorophyll d and the effect of chlorophyll exchange, J. Phys. Chem., 2022, vol. 126, pp. 4009‒4021.

    Article  CAS  Google Scholar 

  72. Kirk, J.T.O., Light and Photosynthesis in Aquatic Ecosystems, Cambridge Univ. Press, 1994, 2nd ed.

    Book  Google Scholar 

  73. Koizumi, H., Itoh, Y., Hosoda, S., Akiyama, M., Hoshino, T., Shiraiwa, Y., and Kobayashi, M., Serendipitous discovery of Chl d formation from Chl a with papain, Sci. Technol. Adv. Mater., 2005, vol. 6, pp. 551–557.

    Article  CAS  Google Scholar 

  74. Kühl, M., Chen, M., Ralph, P.J., Schreiber, U., and Larkum, A.W.D., A niche for cyanobacteria containing chlorophyll d, Nature, 2005, vol. 433, p. 820.

    Article  Google Scholar 

  75. Larkum, A.W.D., Chen, M., Li, Y., Schliep, M., Trampe, E., West, J., Salih, A., and Kühl, M., A novel epiphytic chlorophyll d-containing cyanobacterium isolated from mangrove-associated red alga, J. Phycol., 2012, vol. 48, pp. 1320–1327.

    Article  Google Scholar 

  76. Larkum, A.W.D., Ritchie, R.J., and Raven, J.A., Living off the Sun: chlorophylls, bacteriochlorophylls and rhodopsins, Photosynthetica, 2018, vol. 56, pp. 11‒43.

    Article  CAS  Google Scholar 

  77. La Roche, J., van der Staay, G.W.M., Partensky, F., Ducret, A., Aebersold, R., Li, R., Golden, S.S., Hiller, R.G., Wrench, P.M., Larkum, A.W.D., and Green, B.R., Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins, Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, pp. 15244–15248.

    Article  CAS  Google Scholar 

  78. Lewin, R.A., Prochlorophyta as a proposed new division of algae, Nature, 1976, vol. 261, pp. 697–698.

    Article  CAS  Google Scholar 

  79. Lin, Y., Crossett, B., and Chen, M., Effects of anaerobic conditions on photosynthetic units of Acaryochloris marina, in Photosynthesis Research for Food, Fuel and the Future: 15th Int. Conf. on Photosynthesis, Kuang, T., Lu, C., and Zhang, L., Eds., Springer Science + Business Media B.V., 2013, pp. 121‒124.

  80. Li, Y. and Chen, M., Novel chlorophylls and new directions in photosynthesis research, Funct. Plant Biol., 2015, vol. 42, pp. 493‒501.

    Article  Google Scholar 

  81. Li, Y., Larkum, A., Schliep, M., Kühl, M., Neilan, B., and Chen, M., Newly isolated Chl d-containing cyanobacteria, in Photosynthesis Research for Food, Fuel and the Future. Proc. 15th Int. Conf. on Photosynthesis, Kuang, T., Lu, C., and Zhang, L., Eds., Springer Science + Business Media B.V., 2013, pp. 686‒690.

  82. Li, Y., Lin, Y., Garvey, C.J., Birch, D., Corkery, R.W., Loughlin, P.C., Scheer, H., Willows, R.D., and Chen, M., Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris, Biochim. Biophys. Acta, 2016, vol. 1857, pp. 107–114.

    Article  CAS  Google Scholar 

  83. López-Legentil, S., Song, B., Bosch, M., Pawlik, J.R., and Turon, X., Cyanobacterial diversity and a new Acaryochloris-like symbiont from Bahamian sea-squirts, PLoS One, 2011, vol. 6, p. e23938. https://doi.org/10.1371/journal.pone.0023938

    Article  CAS  Google Scholar 

  84. Loughlin, P., Lin, Y., and Chen, M., Chlorophyll d and Acaryochloris marina: current status, Photosynth. Res., 2013, vol. 116, pp. 277–293.

    Article  CAS  Google Scholar 

  85. MacColl, R., Cyanobacterial phycobilisomes, J. Struct. B-iol., 1998, vol. 124, pp. 311−334.

    Article  CAS  Google Scholar 

  86. Manning, W.M. and Strain, H.H., Chlorophyll d, a green pigment of red algae, J. Biol. Chem., 1943, vol. 151, pp. 1‒19.

    Article  CAS  Google Scholar 

  87. Martinez-Garcia, M., Koblızek, M., Lopez-Legentil, S., and Anton, J., Epibiosis of oxygenic phototrophs containing chlorophylls a, b, c and d on the colonial ascidian Cystodytes dellechiajei, Microb. Ecol., 2011, vol. 61, pp. 13–19.

    Article  CAS  Google Scholar 

  88. Mascoli, V., Bhatti, A.F., Bersanini, L., van Amerongen, H., and Croce, R., The antenna of far-red absorbing cyanobacteria increases both absorption and quantum efficieny of Photosystem II, Nat. Commun., 2022, vol. 13, p. 3562. https://doi.org/10.1038/s41467-022-31099-5

    Article  CAS  Google Scholar 

  89. McNamara, C.J., Perry VI, T.D., Bearce, K.A., Hernandez-Duque, G., and Mitchell, R., Epilithic and endolithic bacterial communities in limestone from a Mayan archaeological site, Microb. Ecol., 2006, vol. 51, pp. 51–64.

    Article  Google Scholar 

  90. Miao, D., Ding, W.-L., Zhao, B.-Q., Lu, L., Xu, Q.-Z., Scheer, H., and Zhao, K.-H. Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC 7335, Biochim. Biophys. Acta, 2016, vol. 1857, pp. 688–694.

    Article  CAS  Google Scholar 

  91. Miller, S.R., Augustine, S., Olson, T.L., Blanken-ship, R.E., Selker, J., and Wood, A.M., Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 850‒855.

    Article  CAS  Google Scholar 

  92. Miller, S.R., Wood, A.M., Blankenship, R.E., Kim, M.N., and Ferriera, S., Dynamics of gene duplication in the genomes of chlorophyll d-producing cyanobacteria: implications for the ecological niche, Genome Biol. Evol., 2011, vol. 3, pp. 601–613. https://doi.org/10.1093/gbe/evr060

    Article  CAS  Google Scholar 

  93. Mimuro, M., Akimoto, S., Gotoh, T., Yokono, M., Akiyama, M., Tsuchiya, T., Miyashita, H., Kobayashi, M., and Yamazaki, I., Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina, FEBS Lett., 2004, vol. 556, pp. 95–98.

    Article  CAS  Google Scholar 

  94. Mimuro, M., Akimoto, S., Yamazaki, I., Miyashita, H., and Miyachi, S., Fluorescence properties of chlorophyll d-dominating prokaryotic alga, Acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells, Biochim. Biophys. Acta, 1999, vol. 1412, pp. 37–46.

    Article  CAS  Google Scholar 

  95. Mimuro, M., Hirayama, K., Uezono, K., Miyashita, H., and Miyachi, S., Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina, Biochim. Biophys. Acta, 2000, vol. 1456, pp. 27–34.

    Article  CAS  Google Scholar 

  96. Miyashita, H., Adachi, K., Kurano, N., Ikemoto, H., Chihara, M., and Miyachi, S., Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll, Plant Cell Physiol., 1997, vol. 38, pp. 274–281.

    Article  CAS  Google Scholar 

  97. Miyashita, H., Ikemoto, H., Kurano, N., Adachi, K., Chihara, M., and Miyachi, S., Chlorophyll d as a major pigment, Nature, 1996, vol. 383, p. 402.

    Article  CAS  Google Scholar 

  98. Miyashita, H., Ikemoto, H., Kurano, N., Miyachi, S., and Chihara, M., Acaryochloris marina gen. et sp. nov. (Cyanobacteria), an oxygenic photosynthetic prokaryote containing chlorophyll d as a major pigment, J. Phycol., 2003, vol. 39, pp. 1247‒1253.

    Article  CAS  Google Scholar 

  99. Miyashita, H., Ohkubo, S., Komatsu, H., Sorimachi, Y., Fukayama, D., Fujinuma, D., Akitsu, S., and Kobayashi, M., Discovery of chlorophyll d in Acaryochloris marina and chlorophyll f in a unicellular cyanobacterium, strain KC1, isolated from Lake Biwa, J. Phys. Chem. Biophys., 2014, vol. 4, p. 149. https://doi.org/10.4172/2161-0348.1000149

    Article  Google Scholar 

  100. Mohr, R., Voß, B., Schliep, M., Kurz, T., Maldener, I., Adams, D.G., Larkum, A.W.D., Chen, M., and Hess, W.R., A new chlorophyll d-containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris, ISME J., 2010, vol. 4, pp. 1456–1469.

    Article  CAS  Google Scholar 

  101. Murakami, A., Miyashita, H., Iseki, M., Adachi, K., and Mimuro, M., Chlorophyll d in an epiphytic cyanobacterium of red algae, Science, 2004, vol. 303, p. 1633.

    Article  CAS  Google Scholar 

  102. Murray, J.W., Sequence variation at the oxygen evolving centre of photosystem II: a new class of ‘rogue’ cyanobacterial D1 proteins, Photosynth. Res., 2012, vol. 110, pp. 177–184.

    Article  CAS  Google Scholar 

  103. Neerken, S. and Amesz, J., The antenna reaction center complex of heliobacteria: composition, energy conversion and electron transfer, Biochim. Biophys. Acta, 2001, vol. 1507, pp. 278‒290.

    Article  CAS  Google Scholar 

  104. Niedzwiedzki, D.M., Bar-Zvi, S., Blankenship, R.E., and Adir, N., Mapping the excitation energy migration pathways in phycobilisomes from the cyanobacterium Acaryochloris marina, Biochim. Biophys. Acta—Bioenerg., 2019, vol. 1860, pp. 286‒296.

    Article  CAS  Google Scholar 

  105. Niedzwiedzki, D.M., Liu, H., Chen, M., and Blankenship, R.E., Excited state properties of chlorophyll f in organic solvents at ambient and cryogenic temperatures, Photosynth. Res., 2014, vol. 121, pp. 25‒34.

    Article  CAS  Google Scholar 

  106. Nürnberg, D.J., Morton, J., Santabarbara, S., Telfer, A., Joliot, P., Antonaru, L., Ruban, A., Cardona, T., Krausz, F., Bousac, A., Fantuzzi, A., and Ru-therford, A.W., Photochemistry beyond the red limit in chlorophyll f-containing photosystems, Science, 2018, vol. 360, pp. 1210‒1213.

    Article  Google Scholar 

  107. Ohkubo, S. and Miyashita, H., Selective detection and phylogenetic diversity of Acaryochloris spp. that exist in association with didemnid ascidians and sponge, Microb. Environ., 2012, vol. 27, pp. 217–225.

    Article  Google Scholar 

  108. Ohkubo, S., Miyashita, Y., Murakami, A., Takeyama, H., Tsuchiya, T., and Mimuro, M., Molecular detection of epiphytic Acaryochloris spp. on marine macroalgae, Appl. Environ. Microbiol., 2006, vol. 72, pp. 7912–7915.

    Article  CAS  Google Scholar 

  109. Partensky, F., Six, C., Ratin, M., Garczarek, L., Vaulot, D., Probert, I., Calteu, A., Gourvil, P., Marie, D., Grébert, T., Bouchier, C., Le Panse, S., Gachenot, M., Rodriguez, F., and Garrido, J.L., A novel species of the marine cyanobacterium Acaryochloris with a unique pigment content and lifestyle, Sci. Rep., 2018, vol. 8, p. 9142. https://doi.org/10.1038/s41598-018-27542-7

    Article  CAS  Google Scholar 

  110. Pinevich, A. and Averina, S., New life for old discovery: amazing story about how bacterial predation on Chlorella resolved a paradox of dark cyanobacteria and gave the key to early history of oxygenic photosynthesis and aerobic respiration, Protistology, 2021, vol. 15, pp. 107‒126.

    CAS  Google Scholar 

  111. Pinevich, A.V., Averina, S.G., and Velichko, N.V., Ocherki biologii prokhlorofitov (Studies in Prochlorophyte Biology), St.-Petersburg: S.-Pb. Univ., 2010.

  112. Renger, T. and Schlodder, E., The primary electron donor of Photosystem II of the cyanobacterium Acaryochloris marina is a chlorophyll d and the water oxidation is driven by a chlorophyll a/chlorophyll d heterodimer, J. Phys. Chem., 2008, vol. 112, pp. 7351–7354.

    Article  CAS  Google Scholar 

  113. Sawicki, A. and Chen, M., Molecular mechanism of photosynthesis driven by red-shifted chlorophylls, in Microbial Photosynthesis, Wang Q. et al., Eds., Singapore: Springer, 2020. https://doi.org/10.1007/978-981-15-3110-1_1

    Book  Google Scholar 

  114. Schiller, H., Senger, H., Miyashita, H., Miyachi, S., and Dau, H., Light-harvesting in Acaryochloris marina—spectroscopic characterization of a chlorophyll d-dominated photosynthetic antenna system, FEBS Lett., 1997, vol. 30, pp. 433‒436.

    Article  Google Scholar 

  115. Schliep, M., Chen, M., Larkum, A., and Quinnell, R., The function of MgDVP in a chlorophyll d-containing organism, in Photosynthesis. Energy from the Sun, Allen, J.F. et al., Eds., Dordrecht: Springer, 2008, pp. 1125‒1128.

    Google Scholar 

  116. Schliep, M., Crossett, B., Willows, R.D., and Chen, M., 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors, J. Biol. Chem., 2010, vol. 285, pp. 28450–28456.

    Article  CAS  Google Scholar 

  117. Schmitt, F.-J., Campbell, Z.Y., Bui, M.V., Hüls, A., Tomo, T., Chen, M., Maksimov, E.G., Allakhverdiev, S.I., and Friendrich, T., Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light, Photosynth. Res., 2019, vol. 139, pp. 185‒201.

    Article  CAS  Google Scholar 

  118. Shen, G., Canniffe, D.P., Ho, M.Y., Kurashov, V., van der Est, A., Golbeck, J.Y., and Bryant, D.A., Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002, Photosynth. Res., 2019, vol. 140, pp. 77–92.

    Article  CAS  Google Scholar 

  119. Shen, L.-Q., Zhang, Z.-C., Shang, J.-L., Li, Z.-K., Chen, M., Li, R., and Qiu, B.-S., Kovacikia minuta sp. nov. (Leptolyngbyaceae, Cyanobacteria), a new freshwater chlorophyll f-producing cyanobacterium, J. Phycol., 2022. Accepted. https://doi.org/10.1111/jpy.13248

  120. Soulier, N., Laremore, T.N., and Bryant, D.A., Characterization of cyanobacterial allophycocyanins absorbing far-red light, Photosynth. Res., 2020, vol. 145, pp. 189–207.

    Article  CAS  Google Scholar 

  121. Swingley, W.D., Chen, M., Cheung, P.C., Conrad, A.L., Dejesa, L.C., Hao, J., Honchak, B.M., Karbach, L.E., Kurdoglu, A., Lahiri, S., Mastrian, S.D., Miyashita, H., Page, L., Ramakrishna, P., Satoh S., et al., Niche adaptation and genome expansion in the chlorophyll d producing cyanobacterium Acaryochloris marina, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 2005–2010.

    Article  CAS  Google Scholar 

  122. Swingley, W.D., Hohmann-Marriott, M.F., Olson, T.L., and Blankenship, R.E., Effect of iron on growth and ultrastructure of Acaryochloris marina, Appl. Environ. Microbiol., 2005, vol. 71, pp. 8606‒8610.

    Article  CAS  Google Scholar 

  123. Tomo, T., Kato, Y., Suzuki, T., Akimoto, S., Okubo, T., Noguchi, T., Hasegawa, K., Tsuchiya, T., Tanaka, K., Fukuya, M., Dohmae, N., Watanabe, T., and Mimuro, M., Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017, J. Biol. Chem., 2008, vol. 283, pp. 18198–18209.

    Article  CAS  Google Scholar 

  124. Tomo, T., Okubo, T., Akimoto, S., Yokono, M., Miyashita, H., Tsuchiya, T., Noguchi, T., and Mimuro, M., Identification of the special pair of photosystem II in a chlorophyll d dominated cyanobacterium, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 7283–7288.

    Article  CAS  Google Scholar 

  125. Tomo, T., Shinoda, T., Chen, M., Allakhverdiev, S.I., and Akimoto, S., Energy transfer processes in chlorophyll f-containing cyanobacteria using time-resolved fluorescence spectroscopy on intact cells, Biochim. Biophys. Acta, 2014, vol. 1837, pp. 1484–1489.

    Article  CAS  Google Scholar 

  126. Trampe, E. and Kühl, M., Chlorophyll f distribution and dynamics in cyanobacterial beachrock biofilms, J. Phycol., 2016, vol. 52, pp. 990‒996.

    Article  CAS  Google Scholar 

  127. Trinugroho, J.P., Bečková, M., Shao, S., Yu, J., Zhao, Z., Murray, J.W., Sobotka, R., Komenda, J., and Nixon, P.J., Chlorophyll f synthesis by a super-rogue photosystem II complex, Nat. Plants, 2020, vol. 6, pp. 238–244.

    Article  CAS  Google Scholar 

  128. Tsuzuki, Y., Tsukatani, Y., Yamakawa, H., Itoh, S., Fujita, Y., and Yamamoto, H., Effects of light and oxygen on chlorophyll d biosynthesis in a marine cyanobacterium Acaryochloris marina, Plants, 2022, vol. 11, p. 915. https://doi.org/10.3390/plants11070915

    Article  CAS  Google Scholar 

  129. Ulrich, N.J., Uchida, H., Kanesaki, Y., Hirose, E., Murakami, A., and Miller, S.R., Reacquisition of light-harvesting genes in a marine cyanobacterium confers a broader solar niche, Curr. Biol., 2021, vol. 31, pp. 1539‒1546.

    Article  CAS  Google Scholar 

  130. Wood, A.M., Acaryochloris—explaining the riddle of chlorophyll d in red algae and expanding PAR for oxygenic photosynthesis, J. Phycol., 2012, vol. 48, pp. 1317‒1319.

    Article  Google Scholar 

  131. Xu, C., Zhu, Q., Chen, J.-H., Shen, L., Yi, X., Huang, Z., Wang, W., Chen, M., Kuang, T., Shen, J.-R., Zhang, X., and Han, G., A unique photosystem I reaction center from a chlorophyll d-containing cyanobacterium Acaryochloris marina, J. Integr. Plant Biol., 2021, vol. 63, pp. 1740‒1752. https://doi.org/10.1111/jipb.13113

    Article  CAS  Google Scholar 

  132. Yoneda, A., Wittmann, B.J., King, J.D., Blankenship, R.E., and Dantas, G., Transcriptomic analysis illuminates genes involved in chlorophyll synthesis after nitrogen starvation in Acaryochloris sp. CCMEE 5410, Photosynth. Res., 2016, vol. 129, pp. 171–182.

    Article  CAS  Google Scholar 

  133. Zhang, Z.-C., Li, Z.-K., Yin, Y.-C., Li, Y., Jia, Y., Chen, M., and Qiu, B.-S., Widespread occurrence and unexpected diversity of red-shifted chlorophyll-producing cyanobacteria in humid subtropical forest ecosystems, Environ. Microbiol., 2019, vol. 21, pp. 1497‒1510. https://doi.org/10.1111/1462-2920.14582

    Article  CAS  Google Scholar 

  134. Zhao, C., Gan, F., Shen, G., and Bryant, D.A., RfpA, R-fpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP), Front. Microbiol., 2015, vol. 6, p. 1303. https://doi.org/10.3389/fmicb.2015.01303

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are greatful to A.L. Lapidus and A.I. Korobeynikov (Laboratory “Center of Bioinformatics and Algorithmic Biotechnology of Saint-Petersburg State University”) for a help in reconstruing the FaRLiP cluster in A. variichlora CALU 1173. Saint-Petersburg State University Research Centers “Cultivation of Microorganisms,” “Molecular and Cell Technologies,” and “Chromas” are acknowledged for strain maintenance and analytical support. Anonymous reviewers are greatly acknowledged for their valuable comments.

Funding

The work was partially supported by the RFBR grant no. 20-04-00020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pinevich.

Ethics declarations

The authors declare no conflicts of interest. The article contains no data of research with animal objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinevich, A.V., Averina, S.G. On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria. Microbiology 91, 631–648 (2022). https://doi.org/10.1134/S0026261722602019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722602019

Keywords:

Navigation