Skip to main content
Log in

Survival of Aging Microbial Populations under Lethal Impacts

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Microorganisms inhabiting natural environments are periodically subject to growth-inhibiting and lethal action of stress factors. Bacterial populations are known to survive and preserve its species identity in the presence of lethal doses of antibiotics due to viable nondividing dormant persister cells. Since the mechanisms of population survival under lethal and especially combined action of chemical and physical stress agents are unknown, this was the goal of the present work. Comparative analysis of survival of the stationary phase cultures of Escherichia coli К-12 MG1655 under lethal impacts of ciprofloxacin (CIP) and a lysing solution, as well as of heat and alkaline shocks, was carried out. Higher resistance to stress impacts was shown for (1) aging stationary phase cells containing a developed biocrystalline nucleoid, compared to the cells just entering the stationary phase; and (2) the populations incubated in a nutrients-free buffer, rather than in a growth medium. CIP treatment of the populations of statically incubated cultures revealed their higher resistance to extreme CIP concentrations (100 µg/mL) compared to the biocidal dose (10 µg/mL) (the Eagle effect). The subpopulations surviving the lethal impacts of heat and pH shock were found to exhibit heterogeneity due to reversion to growth of the cells temporary lacking ability to form colonies on solid media (after 10‒30 days of incubation). Resistance of the cells surviving the heat or pH stresses to the subsequent biocidal treatment with CIP suggests their identification as persister cells. Heterogeneity of the persister subpopulation in their stress resistance may be important for adjustment of the modes for sterilization and antibiotic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Agrawal, A., Rangarajan, N., and Weisshaar, J.C., Resistance of early stationary phase E. coli to membrane permeabilization by the antimicrobial peptide Cecropin A, Biochim. Biophys. Acta.‒Biomembr., 2019, vol. 1861, p. 182990. https://doi.org/10.1016/j.bbamem.2019.05.012

    Article  CAS  Google Scholar 

  2. Almirón, M., Link, A.J., Furlong, D., and Kolter, R., A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli, Genes Dev., 1992, vol. 6 (12B), pp. 2646‒2654. https://doi.org/10.1101/gad.6.12b.2646

    Article  Google Scholar 

  3. Bacterial Persistence. Methods and Protocols, Michiels, J. and Fauvart, M., Eds., Humana New York, NY, 2016. (Methods in Molecular Biology, vol. 1333). https://doi.org/10.1007/978-1-4939-2854-5

  4. Balaban, N., Gerdes, K., Lewis, K., and McKinney, J.D., A problem of persistence: still more questions than answers?, Nat. Rev. Microbiol., 2013, vol. 11, pp. 587‒591.

    Article  CAS  Google Scholar 

  5. Balaban, N., Merrin, I., Chait, R., Kowalik, L., and Leibler, S., Bacterial persistence as a phenotypic switch, Science, 2004, vol. 305, pp. 1622‒1625.

    Article  CAS  Google Scholar 

  6. Cañas-Duart,e S.J., Perez-Lopez, M.I., Herrfurth, C., Sun, L., Contreras, L.M., Feussner, I., Leidy, C., Riaño-Pachón, D.M., Restrepo, S., and Pedraza, J.M., An integrative approach points to membrane composition as a key factor in E. coli persistence, BioRxiv, 2020. 08.28.271171. https://doi.org/10.1101/2020.08.28.271171

  7. Diskowski, M., Mikusevic, V., Stock, C., and Hänelt, I., Functional diversity of the superfamily of K+ transporters to meet various requirements, Biol. Chem., 2015, vol. 396, pp. 1003‒1014. https://doi.org/10.1515/hsz-2015-0123

    Article  CAS  Google Scholar 

  8. Eagle, H. and Musselman, A.D., The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms, J. Exper. Med., 1948, vol. 88, pp. 99–131.

    Article  CAS  Google Scholar 

  9. Eagle, H., A paradoxical zone phenomenon in the bactericidal action of penicillin in vitro, Science, 1948, vol. 107, pp. 44–45.

    Article  CAS  Google Scholar 

  10. El-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Suzina, N.E., Gal’chenko, V.F., and Duda, V.I., Adaptogenic functions of extracellular autoregulators of microorganisms, Microbiology (Moscow), 2006, vol. 75. P. 380‒389.

    Article  CAS  Google Scholar 

  11. Frenkiel-Krispin, D. and Minsky, A., Nucleoid organization and the maintenance of DNA integrity in E. coli, B. subtilis and D. radiodurans, J. Struct. Biol., 2006, vol. 156, pp. 311–319.

    Article  CAS  Google Scholar 

  12. Frenkiel-Krispin, D., Ben-Avraham, I., Englander, J., Shimoni, E., Wolf, S.G., and Minsky, A., Nucleoid restructuring in stationary-state bacteria, Mol. Microbiol., 2004, vol. 51, pp. 395–405.

    Article  CAS  Google Scholar 

  13. Gonçalves, F.D. and de Carvalho, C.C., Phenotypic modifications in Staphylococcus aureus cells exposed to high concentrations of vancomycin and teicoplanin, Front. Microbiol., 2016, vol. 7, p. 13. https://doi.org/10.3389/fmicb.2016.00013

    Article  Google Scholar 

  14. Goode, O., Smith, A., Zarkan, A., Cama, J., Invergo, B.M., Belgami, D., Caño-Muñiz, S., Metz, J., O’Neill, P., Jeffries, A., Norville, I.H., David, J., Summers, D., and Pagliara, S., Persister Escherichia coli cells have a lower intracellular pH than susceptible cells but maintain their pH in response to antibiotic treatment, mBio, 2021, vol. 12, e0090921. https://doi.org/10.1128/mBio.00909-21

    Article  Google Scholar 

  15. Gottesman, S., Trouble is coming: signaling pathways that regulate general stress responses in bacteria, J. Biol. Chem., 2019, vol. 294, pp. 11685‒11700.

    Article  CAS  Google Scholar 

  16. Grant, S.S. and Hung, D.T., Persistent bacterial infections, antibiotic tolerance, and oxidative stress response, Virulence, 2013, vol. 4, pp. 273‒283.

    Article  Google Scholar 

  17. Hofer, U., Stress and disarray leading to persistence, Nat. Rev. Microbiol., 2022, vol. 20, p. 63. https://doi.org/10.1038/s41579-021-00669-7

    Article  CAS  Google Scholar 

  18. Janissen, R., Arens, M., Vtyurina, N.N., Rivai, Z., Sunday, N.D., Eslami-Mossallam, B., Gritsenko, A.A., Laan, L., de Ridder, D., Artsimovitch, I., Dekker, N.H., Abbondanzieri, E.A., and Meyer, A.S., Global DNA compaction in stationary-phase bacteria does not affect transcription, Cell, 2018, vol. 174, pp. 1188–1199. e14. https://doi.org/10.1016/j.cell.2018.06.049

  19. Jia, Y., Yu, C., Fan, J., Fu, Y., Ye, Z., Guo, X., Xu, Y., and Shen, C., Alterations in the cell wall of Rhodococcus biphenylivorans under norfloxacin stress, Front. Microbiol., 2020, vol. 11, p. 554957. https://doi.org/10.3389/fmicb.2020.554957

    Article  Google Scholar 

  20. Karas, V.O., Westerlaken, I., and Meyer, A.S., The DNA-binding protein from starved cells (Dps) utilizes dual functions to defend cells against multiple stresses, J. Bacteriol., 2015, vol. 197, pp. 3206‒3215. https://doi.org/10.1128/JB.00475-15

    Article  CAS  Google Scholar 

  21. Krupyanskii, Y.F., Loiko, N.G., Sinitsyn, D.O., Tereshkina, K.B., Tereshkin, E.V., Frolov, I.A., Chulichkov, A.L., Bokareva, D.A., Mysyakina, I.S., Nikolaev, Y.A., El’-Registan, G.I., Popov, V.O., Sokolova, O.S., Shaitan, K.V., and Popov, A.N., Biocrystallization in bacterial and fungal cells and spores, Crystallogr. Rep., 2018, vol. 63, pp. 594‒599.

    Article  CAS  Google Scholar 

  22. Kryazhevskikh, N.A., Demkina, E.V., Manucharo-va, N.A., Soina, V.S., Gal’chenko, V.F., and El’-Registan, G.I., Reactivation of dormant and nonculturable bacterial forms from paleosoils and subsoil permafrost, Microbiology (Moscow), 2012, vol. 81, pp. 435–445.

    Article  CAS  Google Scholar 

  23. Lewis, K., Persister cells, Annu. Rev. Microbiol., 2010, vol. 64, pp. 357‒372.

    Article  CAS  Google Scholar 

  24. Loiko, N.G., Kozlova, A.N., Nikolaev, Y.A., Gapo-nov, A.M., Tutel’yan, A.V., and El’-Registan, G.I., Effect of stress on emergence of antibiotic-tolerant Escherichia coli cells, Microbiology (Moscow), 2015, vol. 84, pp. 595‒609.

    Article  CAS  Google Scholar 

  25. Maisonneuve, E. and Gerdes, K., Molecular mechanisms underlying bacterial persisters cell, Cell, 2014, vol. 157, pp. 539‒548. https://doi.org/10.1016/j.cell.2014.02.050

    Article  CAS  Google Scholar 

  26. Mohiuddin, S.G., Ghosh, S., Ngo, H.G., Sensenbach, S., Karki, P., Dewangan, N.K., Angardi, V., and Orman, M.A., Cellular self-digestion and persistence in bacteria, Microorganisms, 2021, vol. 31, p. 2269. https://doi.org/10.3390/microorganisms9112269

    Article  CAS  Google Scholar 

  27. Orman, M.A. and Brynildsen, M.P., Inhibition of stationary phase respiration impairs persister formation in E. coli, Nat. Commun., 2015, vol. 6, pp. 1–13. https://doi.org/10.1038/ncomms8983

    Article  CAS  Google Scholar 

  28. Padan, E., Bibi, E., Ito, M., and Krulwich, T.A., Alkaline pH homeostasis in bacteria: new insights, Biochim. Biophys. Acta, 2005, vol. 1717, pp. 67‒88. https://doi.org/10.1016/j.bbamem.2005.09.010

    Article  CAS  Google Scholar 

  29. Peyrusson, F., Nguyen, T.K., Najdovski, T., and Van Bambeke, F., Host cell oxidative stress induces dormant Staphylococcus aureus persisters, Microbiol. Spectr., 2022, vol. 10, p. e0231321. https://doi.org/10.1128/spectrum.02313-21

    Article  Google Scholar 

  30. Pletnev, P., Osterman, I., Sergiev, P., Bogdanov, A., and Dontsova, O., Survival guide: Escherichia coli in the stationary phase, Acta Naturae, 2015, vol. 7, no. 4, pp. 22‒33.

    Article  CAS  Google Scholar 

  31. Podlesek, Z., Butala, M., Šakanović, A., and Žgur-Bertok, D., Antibiotic induced bacterial lysis provides a reservoir of persisters, Antonie van Leeuwenhoek, 2016, vol. 109, pp. 523‒528. https://doi.org/10.1007/s10482-016-0657-x

    Article  CAS  Google Scholar 

  32. Prasetyoputri, A., Jarrad, A.M., Cooper, M.A., and Blaskovich, M.A.T., The Eagle effect and antibiotic-induced persistence: two sides of the same coin?, Trends Microbiol., 2019, vol. 27, pp. 339‒354. https://doi.org/10.1016/j.tim.2018.10.007

    Article  CAS  Google Scholar 

  33. Rittershaus, E.S., Baek, S.H., and Sassetti, C.M., The normalcy of dormancy: common themes in microbial quiescence, Cell Host Microbe, 2013, vol. 13, pp. 643–651. https://doi.org/10.1016/j.chom.2013.05.012

    Article  CAS  Google Scholar 

  34. Saito, H. and Kobayashi, H., Bacterial responses to alkaline stress, Sci. Prog., 2003, vol. 86, pp. 271‒282. https://doi.org/10.3184/003685003783238635

    Article  CAS  Google Scholar 

  35. Suzina, N.E., Mulyukin, A.L., Loiko, N.G., Kozlova A.N., Dmitriev V.V., Shorohova A.P., Gorlenko, V.M., Duda, V.I., and El’-Registan, G.I., Fine structure of mummified cells of microorganisms formed under the influence of a chemical analogue of the anabiosis autoinducer, Microbiology (Moscow), 2001, vol. 70, pp. 667–677.

    Article  CAS  Google Scholar 

  36. Tkachenko, A.G., Molekulyarnye mekhanizmy stressornykh otvetov u mikroorganizmov: nauchnoe izdanie (Molecular Mechanisms of Stressor Responses in Microorganisms: A Scientific Edition), Ekaterinburg: Inst. Ecol. Genet. Microorg., 2012.

  37. Van den Bergh, B., Fauvart, M., and Michiels, J., Formation, physiology, ecology, evolution and clinical importance of bacterial persisters, FEMS Microbiol. Rev., 2017, vol. 41, pp. 219‒251. https://doi.org/10.1093/femsre/fux001

    Article  CAS  Google Scholar 

  38. Van den Bergh, B., Schramke, H., Michiels, J.E., Kimkes, T.E.P., Radzikowski, J.L., Schimpf, J., Vedelaar, S.R., Burschel, S., Dewachter, L., Lončar, N., Schmidt, A., Meijer, T., Fauvart, M., Friedrich, T., Michiels, J., and Heinemann, M., Mutations in respiratory complex I promote antibiotic persistence through alterations in intracellular acidity and protein synthesis, Nat. Commun., 2022, vol. 13, p. 546. https://doi.org/10.1038/s41467-022-28141-x

    Article  CAS  Google Scholar 

  39. Wainwright, J., Hobbs, G., and Nakouti, I., Persister cells: formation, resuscitation and combative therapies, Arch. Microbiol., 2021, vol. 203, pp. 5899–5906.

    Article  CAS  Google Scholar 

  40. Wang, X.T., Xiao, S.D., and Ma, B.G., Molecular responses to heat stress in Escherichia coli, in Stress: Genetics, Epigenetics and Genomics. Handbook of Stress Series., Fink, G., Ed., Elsevier, 2020, vol. 4, pp. 289‒296.

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in terms of the State Assignment titled “Microbiology of Innovative Biotechnologies” (no. 122040800164-6) allocated for the Biotechnology Federal Research Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. El-Registan.

Ethics declarations

The authors declare that they have no conflict of interests.

This article does not contain any studies involving animals performed by any of the authors.

Additional information

 Translated by A. Oleskin

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Registan, G.I., Loiko, N.G. & Nikolaev, Y.A. Survival of Aging Microbial Populations under Lethal Impacts. Microbiology 91, 693–703 (2022). https://doi.org/10.1134/S0026261722601774

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722601774

Keywords:

Navigation