Skip to main content
Log in

Production, Purification and Characterization of a Novel Thermostable Caffeine Dehydrogenase from Pichia manshurica Strain CD1 Isolated from Kombucha Tea

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Kombucha tea is a consortium of yeasts and bacteria (predominantly acetic acid ones). One caffeine-degrading yeast was isolated from kombucha tea, identified using 18S rRNA sequencing and phylogenetic analysis, and classified as Pichia manshurica CD1 (GenBank accession number KY799109). The strain was found to able not only to degrade caffeine, but also to use it as a sole source of carbon and nitrogen. In such a caffeine medium the strain required about two days of incubation to reach maximum growth. An NBT-dependent (nitro blue tetrazolium chloride), caffeine dehydrogenase activity assay was established and the enzyme was purified. It was found that the caffeine dehydrogenase was a monomer of approximately 85 kDa and had optimal activity at pH 7.5. Interestingly, the enzyme showed high activity and stability over a wide range of temperatures, with almost 71% of activity being retained after incubation at 55°C for 20 min and 54% of its initial activity was retained even after incubation at 100°C. The purified caffeine dehydrogenase had high substrate specificity towards caffeine (Km 11.2 µM and Vmax 0.372 nmol/(mL min)) at 0.5 mM concentration. The enzyme activity was partially inhibited in the presence of Cr2+, Pb2+, Zn2+, Ni2+, Hg2+, and Mg2+ at 1 mM, and completely inhibited by Cu2+. The enzyme activity was also strongly suppressed by β‑mercaptoethanol, SDS, DTT and EDTA. These interesting industry-oriented properties of caffeine dehydrogenase isolated from Pichia manshurica CD1 may be useful for many biotechnological processes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Aloulou, A., Hamden, K., Elloumi, D., Ali, M.B., Har-gafi, K., Jaouadi, B., Ayadi, F., Elfeki, A., and Ammar, E., Hypoglycemic and antilipidemic properties of kombucha tea in alloxan-induced diabetic rats, BMC Complement. Altern. Med., 2012, vol. 12, pp. 1–9. https://doi.org/10.1186/1472-6882-12-63

    Article  Google Scholar 

  2. Banerjee, D., Hassarajani, S.A., Maity, B., Narayan, G., Bandyopadhyay, S.K., and Chattopadhyay, S., Comparative healing property of kombucha tea and black tea against indomethacin-induced gastric ulceration in mice: possible mechanism of action, Food Funct., 2010, vol. 1, pp. 284–293. https://doi.org/10.1039/C0FO00025F

    Article  CAS  PubMed  Google Scholar 

  3. Bhattacharya, S., Gachhui, R., and Sil, P.C., Hepatoprotective properties of kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis, Pathophysiology, 2011, vol. 18, pp. 221–234. https://doi.org/10.1016/J.PATHOPHYS.2011.02.001

    Article  PubMed  Google Scholar 

  4. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  5. Chen, Y.H., Huang, Y.H., Wen, C.C., Wang, Y.H., Chen, W.L., Chen, L.C., and Tsay, H.J., Movement disorder and neuromuscular change in zebrafish embryos after exposure to caffeine, Neurotoxicol. Teratol., 2008, vol. 30, pp. 440–447. https://doi.org/10.1016/J.NTT.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  6. Chevallet, M., Luche, S., and Rabilloud, T., Silver staining of proteins in polyacrylamide gels, Nat. Protoc., Epub ahead of print 2006, vol. 1, no. 4, pp. 1852–1858. https://doi.org/10.1038/nprot.2006.288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chi, L.Y., Kale, Y., Gopishetty, S., Tai, M.L., and Subramanian, M., A novel caffeine dehydrogenase in Pseudomonas sp. strain CBB1 oxidizes caffeine to trimethyluric acid, J. Bacteriol., 2008, vol. 190, pp. 772–776. https://doi.org/10.1128/JB.01390-07

    Article  CAS  Google Scholar 

  8. Chi, L.Y., Tai, M.L., Summers, R., Kale, Y., Gopishetty, S., Tai, M.L., and Subramanian, M., Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5, J. Bacteriol., 2009, vol. 191, pp. 4624–4632. https://doi.org/10.1128/JB.00409-09

    Article  CAS  Google Scholar 

  9. da Silva, L.C.A., Honorato, T.L., Cavalcante, R.S., Franco, T.T., and Rodrigues, S., Effect of pH and temperature on enzyme activity of chitosanase produced under Solid stated fermentation by Trichoderma spp., Indian J. Microbiol., 2012, vol. 52, pp. 60–65. https://doi.org/10.1007/S12088-011-0196-0

    Article  CAS  PubMed  Google Scholar 

  10. Dash, S.S. and Gummadi, S.N., Catabolic pathways and biotechnological applications of microbial caffeine degradation, Biotechnol. Lett., 2006, vol. 28, pp. 1993–2002. https://doi.org/10.1007/S10529-006-9196-2

    Article  CAS  PubMed  Google Scholar 

  11. Dhar, P. and Kaur, G., Effects of carbon and nitrogen sources on the induction and repression of chitinase enzyme from Metarhizium anisopliae isolates, Ann. Microbiol., 2009 vol. 59, pp. 545–551. https://doi.org/10.1007/BF03175144

    Article  CAS  Google Scholar 

  12. Fernandes, A.S., Mello, F.V.C., Thode Filho, S., Carpes, R.M., Honorio, J.G., Marques, M.R.C., Felzenszwalb, I., and Ferraz, E.R.A., Impacts of discarded coffee waste on human and environmental health, Ecotoxicol. Environ. Saf., 2017, vol. 141, pp. 30–36. https://doi.org/10.1016/J.ECOENV.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  13. Gummadi, S.N., Bhavya, B., and Ashok, N., Physiology, biochemistry and possible applications of microbial caffeine degradation, Appl. Microbiol. Biotechnol., 2011, vol. 93, pp. 545–554. https://doi.org/10.1007/S00253-011-3737-X

    Article  PubMed  Google Scholar 

  14. Heckman, M.A., Weil, J., and de Mejia, E.G., Caffeine (1,3,7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory, matters, J. Food Sci., 2010, vol. 75, pp. 77–87. https://doi.org/10.1111/J.1750-3841.2010.01561.X

    Article  Google Scholar 

  15. Ibrahim, S., Shukor, M.Y., Syed, M.A., Wan Johari, W.L., and Ahmad, S.A., Characterisation and growth kinetics studies of caffeine-degrading bacterium Leifsonia sp. strain SIU, Ann. Microbiol., 2016, vol. 66, pp. 289–298. https://doi.org/10.1007/S13213-015-1108-Z

    Article  CAS  Google Scholar 

  16. Jayabalan, R., Malbaša, R.V., Lončar, E.S., Vitas, J.S., and Sathishkumar, M., A review on Kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus, Compr. Rev. Food Sci. Food Saf., 2014, vol.  3, pp. 538–550. https://doi.org/10.1111/1541-4337.12073

    Article  Google Scholar 

  17. Kumar, S., Stecher, G., Tamura, K., and Dudley J. M-EGA7: molecular evolutionary genetics analysis ver-sion 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685. https://doi.org/10.1038/227680A0

    Article  CAS  PubMed  Google Scholar 

  19. Lovallo, W.R., Whitsett, T.L., Al’Absi, M., Sung, B.H., Vincent, A.S., and Wilson, M.F., Caffeine stimulation of cortisol secretion across the waking hours in relation to caffeine intake levels, Psychosom. Med., 2005, vol. 67, pp. 734–739. https://doi.org/10.1097/01.PSY.0000181270.20036.06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Madyastha, K.M. and Sridhar, G.R., A novel pathway for the metabolism of caffeine by a mixed culture consortium, Biochem. Biophys. Res. Commun., 1998, vol. 249, pp. 178–181. https://doi.org/10.1006/BBRC.1998.9102

    Article  CAS  PubMed  Google Scholar 

  21. Madyastha, K.M., Sridhar, G.R., Vadiraja, B.B., and Madhavi, Y.S., Purification and partial characterization of caffeine oxidase—a novel enzyme from a mixed culture consortium, Biochem. Biophys. Res. Commun., 1999, vol. 263, pp. 460–464. https://doi.org/10.1006/BBRC.1999.1401

    Article  CAS  PubMed  Google Scholar 

  22. Mazzafera, P., Olsson, O., and Sandberg, G., Degradation of caffeine and related methylxanthines by Serratia marcescens isolated from soil under coffee cultivation, Microb. Ecol., 2004, vol. 31, pp. 199–207. https://doi.org/10.1007/BF00167865

    Article  Google Scholar 

  23. Mohapatra, B.R., Harris, N., Nordin, R., and Mazumder, A., Purification and characterization of a novel caffeine oxidase from Alcaligenes species., J. Biotechnol., 2006, vol. 125, pp. 319–327. https://doi.org/10.1016/J.JBIOTEC.2006.03.018

    Article  CAS  PubMed  Google Scholar 

  24. Retamal, C.A., Thiebaut, P., and Alves, E.W., Protein purification from polyacrylamide gels by sonication extraction, Anal. Biochem., 1999, vol. 268, pp. 15–20. https://doi.org/10.1006/ABIO.1998.2977

    Article  CAS  PubMed  Google Scholar 

  25. Reyes, C.M. and Cornelis, M.C., Caffeine in the diet: country-level consumption and guidelines, Nutr., 2018, vol. 10, p. 1772. https://doi.org/10.3390/NU10111772

    Article  Google Scholar 

  26. Roy, S., Parvin, R., Ghosh, S., Bhattacharya, S., and Maity, S., Occurrence of a novel tannase (tan BLP) in endophytic Streptomyces sp. AL1L from the leaf of Ailanthus excelsa Roxb, 3 Biotech., 2018, vol. 8, p. 33. https://doi.org/10.1007/S13205-017-1055-4

  27. Summers, R.M., Louie, T.M., Yu, C.L., and Subrama-nian, M., Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source, Microbiology (UK), 2011, vol. 157, pp. 583–592. https://doi.org/10.1099/MIC.0.043612-0

    Article  CAS  PubMed  Google Scholar 

  28. Summers, R.M., Mohanty, S.K., Gopishetty, S., and Subramanian, M., Genetic characterization of caffeine degradation by bacteria and its potential applications, Microb. Biotechnol., 2015, vol. 8, pp. 369–378. https://doi.org/10.1111/1751-7915.12262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Villarreal-Soto, S.A., Beaufort, S., Bouajila, J., Souchard, J.P., and Taillandier, P., Understanding Kombucha tea fermentation: a review, J. Food Sci., 2018, vol. 83, pp. 580–588. https://doi.org/10.1111/1750-3841.14068

    Article  CAS  PubMed  Google Scholar 

  30. Voet, D., Voet, J.G., and Pratt, C.W., Fundamentals of Biochemistry, 2016, vol. 1452, New York: Wiley.

  31. Zhou, B., Ma, C., Wang, H., and Xia, T., Biodegradation of caffeine by whole cells of tea-derived fungi Aspergillus sydowii, Aspergillus niger and optimization for caffeine degradation, BMC Microbiol., 2018, vol. 18, pp. 1–10. https://doi.org/10.1186/S12866-018-1194-8

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the State Government, Government of West Bengal for fellowship to RP.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

R. Parvin#: conceptualization, investigation, methodology, formal analysis, data curation, drawing all the graphs, and writing-original draft.

S. Bhattacharya#: conceptualization, investigation, methodology, formal analysis, and writing-original draft.

S.S. Chaudhury: methodology, data curation.

U. Roy: Data curation.

J. Mukherjhee: conceptualization, writing-review and editing, validation, resources, formal analysis.

R. Gachhui: supervision, conceptualization, writing-review and editing, validation, resources, formal analysis.          #Equal contributions.

Corresponding author

Correspondence to R. Gachhui.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any experiments with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvin, R., Bhattacharya, S., Chaudhury, S.S. et al. Production, Purification and Characterization of a Novel Thermostable Caffeine Dehydrogenase from Pichia manshurica Strain CD1 Isolated from Kombucha Tea. Microbiology 92, 230–241 (2023). https://doi.org/10.1134/S0026261722601476

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722601476

Keywords:

Navigation