Skip to main content
Log in

Acidobacteria in Fens: Phylogenetic Diversity and Genome Analysis of the Key Representatives

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Acidobacteriota are one of the major prokaryotic groups in soils and peatlands. They are especially abundant in acidic peat bogs, where representatives of the well-characterized class Acidobacteriia predominate. The diversity and metabolic potential of Acidobacteriota inhabiting fens with neutral pH have been studied less thoroughly. We analyzed the composition of acidobacterial communities in four peat bogs and six fens of the Vologda region. The Acidobacteriota-affiliated 16S rRNA gene sequences comprised 30–42 and 7–22% of all reads retrieved from the peat bogs and fens, respectively. The acidobacteria of peat bogs were represented by the orders Acidobacteriales and Bryobacterales of the class Acidobacteriia, while the classes Vicinamibacteria and Blastocat•ellia predominated in fens. Genomes of four uncultured bacteria of Blastocatellia (family Pyrinomonadaceae, two genomes), Vicinamibacteria (family UBA2999), and Thermoanaerobaculia (order UBA5066) were assembled from the metagenomes of peat fens. Genome analysis revealed key pathways of aerobic heterotrophic metabolism in all four microorganisms, including the Embden–Meyerhof pathway, gluconeogenesis, the non-oxidative stage of the pentose phosphate pathway, the tricarboxylic acid cycle, and the electron transport chain of aerobic respiration, including terminal cytochrome c oxidases. All genomes encoded molybdopterin oxidoreductases of the CISM family and multiheme cytochromes c, indicating the possibility of dissimilatory reduction of sulfur compounds and Fe(III) under anaerobic conditions. Probable growth substrates may be amino acids, peptides, and fatty acids. Members of the Pyrinomonadaceae can also use various carbohydrates, including polysaccharides, and are likely involved in the degradation of various biopolymers in peat bogs. Members of Thermoanaerobaculia and Vicinamibacteria lacked the genes for secreted glycosyl hydrolases and probably could only use a limited range of simple sugars. The genome of a bacterium of the class Vicinamibacteria contained a set of genes encoding bacterial microcompartments (metabolosomes) that have not previously been described in acidobacteria and are probably involved in the metabolism of L-rhamnose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Almagro Armenteros, J.J., Tsirigos, K.D., Sønderby, C.K., Petersen, T.N., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H., SignalP 5.0 improves signal peptide predictions using deep neural networks, Nat. Biotechnol., 2019, vol. 37, pp. 420–423.

    Article  CAS  Google Scholar 

  2. Barns, S.M., Cain, E.C., Sommerville, L., and Kuske, C.R., Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum, Appl. Environ. Microbiol., 2007, vol. 7, pp. 3113–3116.

    Article  Google Scholar 

  3. Belova, S.E., Ravin, N.V., Pankratov, T.A., Rakitin, A.L., Ivanova, A.A., Beletsky, A.V., Mardanov, A.V., Sinninghe Damsté, J.S., and Dedysh, S.N., Hydrolytic capabilities as a key to environmental success: chitinolytic and cellulolytic Acidobacteria from acidic sub-arctic soils and boreal peatlands, Front. Microbiol., 2018, vol. 9, p. 2775.

    Article  Google Scholar 

  4. Bobik, T.A., Havemann, G.D., Busch, R.J., Williams, D.S., and Aldrich, H.C., The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B12-dependent 1,2-propanediol degradation, J. Bacteriol., 1999, vol. 181, pp. 5967–5975.

    Article  CAS  Google Scholar 

  5. Brettin, T., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Olsen, G.J., Olson, R., Overbeek, R., Parrello, B., Pusch, G.D., Shukla, M., Thomason, J.A. 3rd, Stevens, R., Vonstein, V., Wattam, A.R., and Xia, F., RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes, Sci. Rep., 2015, vol. 5, p. 8365.

    Article  Google Scholar 

  6. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P., DADA2: High-resolution sample inference from Illumina amplicon data, Nat. Methods, 2016, vol. 13, pp. 581–583.

    Article  CAS  Google Scholar 

  7. Caporaso, J., Kuczynski, J., and Stombaugh, J., QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 2010, vol. 7, pp. 335–336.

    Article  CAS  Google Scholar 

  8. Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P., and Parks, D.H., GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database, Bioinform., 2020, vol. 36, pp. 1925–1927.

    CAS  Google Scholar 

  9. Chowdhury, C., Sinha, S., Chun, S., Yeates, T.O., and Bobik, T.A., Diverse bacterial microcompartment organelles, Microbiol. Mol. Biol. Rev., 2014, vol. 78, pp. 438–468.

    Article  Google Scholar 

  10. Crowe, M.A., Power, J.F., Morgan, X.C., Dunfield, P.F., Lagutin, K., Rijpstra, W.I.C., Vyssotski, M., Sinninghe Damste, J.S., Houghton, K.M., Ryan, J.L.J., and Stott, M.B., Pyrinomonas methylaliphatogenes gen. nov., sp. nov., a novel group 4 thermophilic member of the phylum Acidobacteria from geothermal soils, Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 220–227.

    Article  CAS  Google Scholar 

  11. Dedysh, S.N., Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps, Front. Microbiol., 2011, vol. 2, p. 184.

    Article  Google Scholar 

  12. Dedysh, S.N., Beletsky, A.V., Ivanova, A.A., Kulichevs-kaya, I.S., Suzina, N.E., Philippov, D.A., Rakitin, A.L., Mardanov, A.V., and Ravin, N.V., Wide distribution of Phycisphaera-like planctomycetes from WD2101 soil group in peatlands and genome analysis of the first cultivated representative, Environ. Microbiol., 2021, vol. 23, pp. 1510–1526.

    Article  CAS  Google Scholar 

  13. Dedysh, S.N. and Oren, A., “Acidobacteriia,” in Bergey’s Manual of Systematics of Archaea and Bacteria, Whitman, W.B., Rainey, F.A., Kämpfer, P., Trujillo, M.E., DeVos, P., Hedlund, B., and Dedysh, S.N., Eds., Hoboken: John Wiley & Sons, 2020, pp. 1–2. https://doi.org/10.1002/9781118960608.cbm00001.pub2

  14. Dedysh, S.N., Pankratov, T.A., Belova, S.E., Kulichevs-kaya, I.S., and Liesack, W., Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog, Appl. Environ. Microbiol., 2006, vol. 72, pp. 2110–2117.

    Article  CAS  Google Scholar 

  15. Dedysh, S.N. and Yilmaz, P., Refining the taxonomic structure of the phylum Acidobacteria, Int. J. Syst. Evol. Microbiol., 2018, vol. 68, pp. 3796–3806.

    Article  CAS  Google Scholar 

  16. Eichorst, S.A., Trojan, D., Roux, S., Herbold, C., Rattei, T., and Woebken, D., Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments, Environ. Microbiol., 2018, vol. 20, pp. 1041–1063.

    Article  CAS  Google Scholar 

  17. Erbilgin, O., McDonald, K.L., and Kerfeld, C.A., Characterization of a planctomycetal organelle: a novel bacterial microcompartment for the aerobic degradation of plant saccharides, Appl. Environ. Microbiol., 2014, vol. 80, pp. 2193–2205.

    Article  Google Scholar 

  18. Flieder, M., Buongiorno, J., Herbold, C.W., Hausmann, B., Rattei, T., Lloyd, K.G., Loy, A., and Wasmund, K., Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling, ISME J., 2021, vol. 15, pp. 3159–3180.

    Article  CAS  Google Scholar 

  19. Foesel, B.U., Nägele, V., Naether, A., Wüst, P.K., Weinert, J., Bonkowski, M., Lohaus, G., Polle, A., Alt, F., Oelmann, Y., Fischer, M., Friedrich, M.W., and Overmann, J., Determinants of Acidobacteria activity inferred from the relative abundances of 16S rRNA transcripts in German grassland and forest soils, Environ. Microbiol., 2014, vol. 16, pp. 658–675.

    Article  CAS  Google Scholar 

  20. Greening, C., Carere, C.R., Rushton-Green, R., Harold, L.K., Hards, K., Taylor, M.C., Morales, S.E., Stott, M.B., and Cook, G.M., Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging, Proc. Natl. Acad. Sci. USA, 2015, vol. 11, pp. 10497–10502.

    Article  Google Scholar 

  21. Huang, S., Vieira, S., Bunk, B., Riedel, T., Spröer, C., and Overmann, J., First complete genome sequence of a Subdivision 6 Acidobacterium strain, Genome Announc., 2016, vol. 4, p. e00469–16.

    Article  Google Scholar 

  22. Huber, K.J., Geppert, A.M., Wanner, G., Fösel, B.U., Wüst, P.K., and Overmann, J., The first representative of the globally widespread subdivision 6 Acidobacteria, Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil, Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 2971–2979.

    Article  CAS  Google Scholar 

  23. Ivanova, A.A., Beletsky, A.V., Rakitin, A.L., Kadnikov, V.V., Philippov, D.A., Mardanov, A.V., Ravin, N.V., and Dedysh, S.N., Closely located but totally distinct: highly contrasting prokaryotic diversity patterns in raised bogs and eutrophic fens, Microorganisms, 2020a, vol. 8, p. 484.

    Article  Google Scholar 

  24. Ivanova, A.A., Zhelezova, A.D., Chernov, T.I., and Dedysh, S.N., Linking ecology and systematics of acidobacteria: Distinct habitat preferences of the Acidobacteriia and Blastocatellia in tundra soils, PLoS One, 2020b, vol. 15, p. e0230157.

    Article  CAS  Google Scholar 

  25. Janssen, P.H., Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes, Appl. Environ. Microbiol., 2006, vol. 72, pp. 1719–1728.

    Article  CAS  Google Scholar 

  26. Jones, R.T., Robeson, M.S., Lauber, C.L., Hamady, M., Knight, R., and Fierer, N., A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses, ISME J., 2009, vol. 3, pp. 442–453.

    Article  CAS  Google Scholar 

  27. Kang, D.D., Froula, J., Egan, R., and Wang, Z., MetaBAT an efficient tool for accurately reconstructing single genomes from complex microbial communities, PeerJ., 2015, vol. 3, p. e1165.

    Article  Google Scholar 

  28. Kielak, A.M., Barreto, C.C., Kowalchuk, G.A., van Veen, J.A., and Kuramae, E.E., The ecology of Acidobacteria: moving beyond genes and genomes, Front. Microbiol., 2016, vol. 7, p. 744.

    Article  Google Scholar 

  29. Kofoid, E., Rappleye, C., Stojiljkovic, I., and Roth, J., The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins, J. Bacteriol., 1999, vol. 181, pp. 5317–5329.

    Article  CAS  Google Scholar 

  30. Kulichevskaya, I.S., Suzina, N.E., Liesack, W., and Dedysh, S.N., Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting aerobic chemo-organotroph from subdivision 3 of the Acidobacteria, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 301–306.

    Article  Google Scholar 

  31. Lauber, C.L., Hamady, M., Knight, R., and Fierer, N., Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale, Appl. Environ. Microbiol., 2009, vol. 75, pp. 5111–5120.

    Article  CAS  Google Scholar 

  32. Lee, K.C.Y., Morgan, X.C., Power, J.F., Dunfield, P.F., Huttenhower, C., and Stott, M.B., Complete genome sequence of the thermophilic Acidobacteria, Pyrinomonas methylaliphatogenes type strain K22T, Stand. Genom. Sci., 2015, vol. 14, p. 101.

    Article  Google Scholar 

  33. Lee, S.H., Ka, J.O., and Cho, J.C., Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil, FEMS Microbiol. Lett., 2008, vol. 285, pp. 263–269.

    Article  CAS  Google Scholar 

  34. Li, D., Liu, C.M., Luo, R., Sadakane, K., and Lam, T.W., MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph, Bioinformatics, 2015, vol. 31, pp. 1674–1676.

    Article  CAS  Google Scholar 

  35. Losey, N.A., Stevenson, B.S., Busse, H.J., Damsté, J.S.S., Rijpstra, W.I.C., Rudd, S., and Lawson, P.A., Thermoanaerobaculum aquaticum gen. nov., sp. nov., the first cultivated member of Acidobacteria subdivision 23 isolated from a hot spring, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, pp. 4149–4157.

    Article  CAS  Google Scholar 

  36. Ludwig, W., Bauer, S.H., Bauer, M., Held, I., Kirchhof, G., Schulze, R., Huber, I., Spring, S., Hartmann, A., and Schleifer, K.H., Detection and in situ identification of representatives of a widely distributed new bacterial phylum, FEMS Microbiol. Lett., 1997, vol. 153, pp. 181–190.

    Article  CAS  Google Scholar 

  37. Mandlik, A., Swierczynski, A., Das, A., and Ton-That, H., Pili in Gram-positive bacteria: assembly involvement in colonization and biofilm development, Trends Microbiol., 2008, vol. 16, pp. 33–40.

    Article  CAS  Google Scholar 

  38. Martin, M., Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet. J., 2011, vol. 17.1, pp. 10–12.

  39. Oren, A. and Garrity, G.M., Valid publication of the names of forty-two phyla of prokaryotes, Int. J. Syst. Evol. Microbiol., 2021, vol. 71, p. 005056.

    Article  Google Scholar 

  40. Pankratov, T.A. and Dedysh, S.N., Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic polymer-degrading acidobacteria from Sphagnum peat bogs, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2951–2959.

    Article  CAS  Google Scholar 

  41. Pankratov, T.A., Kirsanova, L.A., Kaparullina, E.N., Kevbrin, V.V., and Dedysh, S.N., Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria and emended description of Acidobacterium capsulatum Kishimoto et al. 1991, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 430–437.

    Article  Google Scholar 

  42. Parks, D.H., Chuvochina, M., Rinke, C., Mussig, A.J., Chaumeil, P.-A., and Hugenholtz, P., GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent rank normalized and complete genome-based taxonomy, Nucl. Acids Res., 2022, vol. 50, pp. D785–D794.

    Article  CAS  Google Scholar 

  43. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W., CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res., 2015, vol. 25, pp. 1043–1055.

    Article  CAS  Google Scholar 

  44. Pitcher, R.S., Brittain, T., and Watmough, N.J., Cytochrome cbb3 oxidase and bacterial microaerobic metabolism, Proc. Biochem. Soc. Trans., 2002, vol. 30, pp. 653–658.

    Article  CAS  Google Scholar 

  45. Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J., and Glöckner F.O., SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB, Nucl. Acids Res., 2007, vol. 35, pp. 7188–7196.

    Article  CAS  Google Scholar 

  46. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucl. Acids Res., 2013, vol. 41, pp. D590–D596.

    Article  CAS  Google Scholar 

  47. Richter, K., Schicklberger, M., and Gescher, J., Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration, Appl. Environ. Microbiol., 2012, vol. 78, pp. 913–921.

    Article  CAS  Google Scholar 

  48. Rothery, R.A., Workun, G.J., and Weiner, J.H., The prokaryotic complex iron–sulfur molybdoenzyme family, Biochim. Biophys. Acta—Biomembr., 2008, vol. 1778, pp. 1897–1929.

    Book  Google Scholar 

  49. Shi, L., Squier, T.C., Zachara, J.M., and Fredrickson, J.K., Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes, Mol. Microbiol., 2007, vol. 65, pp. 12–20.

    Article  CAS  Google Scholar 

  50. Søndergaard, D., Pedersen, C.N.S., and Greening, C., HydDB: a web tool for hydrogenase classification and analysis, Sci. Rep., 2016, vol. 6, p. 34212.

    Article  Google Scholar 

  51. Vieira, S., Luckner, M., Wanner, G., and Overmann, J., Luteitalea pratensis gen. nov., sp. nov., a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 1408–1414.

    Article  CAS  Google Scholar 

  52. Wüst, P.K., Foesel, B.U., Geppert, A., Huber, K.J., Luckner, M., Wanner, G., and Overmann, J., Brevitalea aridisoli, B. deliciosa and Arenimicrobium luteum, three novel species of Acidobacteria subdivision 4 (class Blastocatellia) isolated from savanna soil and description of the novel family Pyrinomonadaceae, Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 3355–3366.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (grant no. 19-29-05059) and by the Ministry of Science and Higher Education of the Russian Federation (agreement 075-15-2022-318 from April 20, 2022 for the support of a world-class scientific center “Agrotechnologies for the Future” and research topic 122041100029-2).

Author information

Authors and Affiliations

Authors

Contributions

The idea of the study was proposed by S.N. Dedysh. Peat sampling and sample description were made by D.A. Philippov. The molecular profiling of prokaryotic communities in peat samples was performed by A.L. Rakitin and A.V. Mardanov. The diversity of acidobacteria was analyzed by A.A. Ivanova. The assembly and analysis of metagenomes were performed by Sh.A. Begmatov, A.V. Beletsky, and N.V. Ravin. The text of the article was written by S.N. Dedysh and N.V. Ravin. All authors took part in discussion of the results.

Corresponding author

Correspondence to N. V. Ravin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interests.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedysh, S.N., Ivanova, A.A., Begmatov, S.A. et al. Acidobacteria in Fens: Phylogenetic Diversity and Genome Analysis of the Key Representatives. Microbiology 91, 662–670 (2022). https://doi.org/10.1134/S0026261722601440

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722601440

Keywords:

Navigation