Skip to main content
Log in

Whole Genome Sequencing of Levilactobacillus brevis HQ1-1 for Understanding the Characteristics of Its Antibiotic Resistance Genes

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are the most commonly used microorganisms in fermented foods. Currently, in the context of antibiotic resistance (AR), the safe use of LAB has attracted more and more attention from researchers. Therefore, a strain of Levilactobacillus brevis HQ1-1 isolated from Chinese traditional fermented milk was used to investigate the association between genomic information and AR characteristics. The current study revealed that its complete genome contained a single circular chromosome of 2 376 708 bp with 7 plasmids, and harbored 2268 CDSs. Among the predicted CDSs, 1874 proteins of L. brevis HQ1-1 were functionally categorized, and divided into 25 groups using COG class description. There were 9 pairs of genes for the two-component regulatory system in the L. brevis HQ1-1 genome. It also contained 11 AR genes responsible for resistance to different antibiotics. Compared with 9 other L. brevis strains, strain HQ1-1 showed a different genome size, GC content, and protein coding regions. However, these strains all carried 11 AR genes. PCR and Kirby-Bauer (K-B) methods were also used to identify their AR genes and evaluate the antibiotic susceptibility. Strain HQ1-1 was not resistant to ampicillin, amoxicillin, rifampicin, erythromycin, and clarithromycin, but was resistant to norfloxacin, ciprofloxacin, fosfomycin, vancomycin and polymyxin B. In this study, it was emphasized that the AR of L. brevis HQ1-1 might bring safety hazards to human diet and health. Therefore, the safety concerns of microbial resistance should be considered when used in food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Albert, T.J., Dailidiene, D., Dailide, G., Norton, J.E., Kalia, A., Richmond, T.A., Molla, M., Singh, J., Green, R.D., and Berg, D.E., Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori, Nat. Methods, 2005, vol. 2, no. 12, pp. 951–953.

    Article  CAS  PubMed  Google Scholar 

  2. Ammor, M.S., Flórez, A.B., and Mayo, B., Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria, Food Microbiol., 2007, vol. 24, no. 6, pp. 559–570.

  3. Andreevskaya, M., Johansson, P., Jääskeläinen, E., Rämö, T., Ritari, J., Paulin, L., Björkroth, J., and Auvinen, P., Lactobacillus oligofermentans glucose, ribose and xylose transcriptomes show higher similarity between glucose and xylose catabolism-induced responses in the early exponential growth phase, BMC Genomics, 2016, vol. 17, p. 539. https://doi.org/10.1186/s12864-016-2840-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Belletti, N., Gatti, M., Bottari, B., Neviani, E., Tabanelli, G., and Gardini, F., Antibiotic resistance of lactobacilli isolated from two Italian hard cheeses, J. Food. Prot., 2009, vol. 72, no. 10, pp. 2162–2169.

    Article  CAS  PubMed  Google Scholar 

  5. Charteris, W.P., Kelly, P.M., Morelli, L., and Collins, J.K., Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract, J. Appl. Microbiol., 1998, vol. 84, no. 5, pp. 759–768.

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, G., Hu, Y., Lu, N., Li, J., Wang, Z., Chen, Q., and Zhu, B., Identification of a novel fosfomycin-resistant UDP-N-acetylglucosamine enolpyruvyl transferase (murA) from a soil metagenome, Biotechnol. Lett., 2013, vol. 35, no. 2, pp. 273–278.

    Article  CAS  PubMed  Google Scholar 

  7. Cheung, J. and Hendrickson, W.A., Sensor domains of two-component regulatory systems, Curr. Opin. Microbiol., 2010, vol. 13, no. 2, pp. 116–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clementi, F. and Aquilanti, L., Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria, Anaerobe, 2011, vol. 17, no. 6, pp. 394–398.

    Article  CAS  PubMed  Google Scholar 

  9. Danielsen, M. and Wind, A., Susceptibility of Lactobacillus spp. to antimicrobial agents, Int. J. Food. Microbiol., 2003, vol. 82, no. 1, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  10. Darling, A.C., Mau, B., Blattner, F.R., and Perna, N.T., Mauve: multiple alignment of conserved genomic sequence with rearrangements, Genome Res., 2004, vol. 14, no. 7, pp. 1394–1403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Delgado, S., Flórez, A.B., and Mayo, B., Antibiotic susceptibility of Lactobacillus and Bifidobacterium species from the human gastrointestinal tract, Curr. Microbiol., 2005, vol. 50, no. 4, pp. 202–207.

    Article  CAS  PubMed  Google Scholar 

  12. Ernst, C.M., Staubitz, P., Mishra, N.N., Yang, S.J., Hornig, G., Kalbacher, H., Bayer, A.S., Kraus, D., and Peschel, A., The bacterial defensin resistance protein mprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion, PLoS Pathog., 2009, vol. 5, no. 11, e1000660. https://doi.org/10.1371/journal.ppat.1000660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Felis, G.E. and Dellaglio, F., Taxonomy of lactobacilli and bifidobacteria, Curr. Iss. Intest. Microbiol., 2007, vol. 8, no. 2, pp. 44–61.

    CAS  Google Scholar 

  14. Fournier, B. and Hooper, D.C., A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity of Staphylococcus aureus, J. Bacteriol., 2000, vol. 182, no. 14, pp. 3955–3964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fukao, M., Tomita, H., Yakabe, T., Nomura, T., Ike, Y., and Yajima, N., Assessment of antibiotic resistance in probiotic strain Lactobacillus brevis KB290, J. Food. Protect., 2009, vol. 72, no. 9, pp. 1923–1929.

    Article  CAS  Google Scholar 

  16. Gad, G.F., Abdel-Hamid, A.M., and Farag, Z.S., Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products, Braz. J. Microbiol., 2014, vol. 45, no. 1, pp. 25–33.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Howden, B.P., Johnson, P.D., Ward, P.B., Stinear, T.P., and Davies, J.K., Isolates with low-level vancomycin resistance associated with persistent methicillin-resistant Staphylococcus aureus bacteremia, Antimicrob. Agents Ch., 2006, vol. 50, no. 9, pp. 3039–3047.

    Article  CAS  Google Scholar 

  18. Hummel, A.S., Hertel, C., Holzapfel, W.H., and Franz, C.M., Antibiotic resistances of starter and probiotic strains of lactic acid bacteria, Appl. Environ. Microbiol., 2007, vol. 73, no. 3, pp. 730–739.

    Article  CAS  PubMed  Google Scholar 

  19. Jang, H.J., Lee, N.K., and Paik, H.D., Probiotic characterization of Lactobacillus brevis KU15153 showing antimicrobial and antioxidant effect isolated from kimchi, Food. Sci. Biotechnol., 2019, vol. 28, no. 5, pp. 1521–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang, X., Yu, T., Zhou, D., Ji, S., Zhou, C., Shi, L., and Wang, X., Characterization of quinolone resistance mechanisms in lactic acid bacteria isolated from yogurts in China, Ann. Microbiol., 2016, vol. 66, no. 3, pp. 1249–1256.

    Article  CAS  Google Scholar 

  21. Kandler O., Carbohydrate metabolism in lactic acid bacteria, Antonie van Leeuwenhoek, 1983, vol. 49, no. 3, pp. 209–224.

    Article  CAS  PubMed  Google Scholar 

  22. Kastner, S., Perreten, V., Bleuler, H., Hugenschmidt, G., Lacroix, C., and Meile, L., Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food, Syst. Appl. Microbiol., 2006, vol. 29, no. 2, pp. 145–155.

    Article  CAS  PubMed  Google Scholar 

  23. Lagesen, K., Hallin, P., Rødland, E.A., Staerfeldt, H.H., Rognes, T., and Ussery, D.W., RNAmmer: consistent and rapid annotation of ribosomal RNA genes, Nucleic. Acids Res., 2007, vol. 35, no. 9, pp. 3100–3108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laxminarayan, R., Sridhar, D., Blaser, M., Wang, M., and Woolhouse, M., Achieving global targets for antimicrobial resistance, Science (New York), 2016, vol. 353, no. 6302, pp. 874–875.

    Article  CAS  PubMed  Google Scholar 

  25. Lee, E.W., Chen, J., Huda, M.N., Kuroda, T., Mizushima, T., and Tsuchiya, T., Functional cloning and expression of emeA, and characterization of emeA, a multidrug efflux pump from Enterococcus faecalis, Biol. Pharm. Bull., 2003, vol. 26, no. 2, pp. 266–270.

    Article  CAS  PubMed  Google Scholar 

  26. Li, X.Z. and Nikaido, H., Efflux-mediated drug resistance in bacteria: an update, Drugs, 2009, vol. 69, no. 12, pp. 1555–1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lowe, T.M. and Chan, P.P., tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes, Nucleic Acids Res., 2016, vol. 44, no. 1, pp. 54–57.

    Article  Google Scholar 

  28. Luong, T.T. and Lee, C.Y., The arl locus positively regulates Staphylococcus aureus type 5 capsule via an mgrA-dependent pathway, Microbiology (SGM), 2006, vol. 152, pp. 3123–3131. https://doi.org/10.1099/mic.0.29177-0

    Article  CAS  PubMed  Google Scholar 

  29. Lu, P., Xiao, Q.H., and Xiao,Y.W., Assessment of antibiotic resistance of lactic acid bacteria in Chinese fermented foods, Food Control., 2011, vol. 22, pp. 1316−1321.

    Article  Google Scholar 

  30. Maruri, F., Sterling, T.R., Kaiga, A.W., Blackman, A., van der Heijden, Y.F., Mayer, C., Cambau, E., and Aubry, A., A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system, J. Antimicrob. Chemoth., 2012, vol. 67, no. 4, pp. 819–831.

    Article  CAS  Google Scholar 

  31. Mathur, S. and Singh, R., Antibiotic resistance in food lactic acid bacteria—a review, Int. J. Food. Microbiol., 2005, vol. 105, no. 3, pp. 281–295.

    Article  CAS  PubMed  Google Scholar 

  32. Miele, A., Goldstein, B.P., Bandera, M., Jarvis, C., Resconi, A., and Williams, R.J., Differential susceptibilities of enterococcal species to elfamycin antibiotics, J. Clin. Microbiol., 1994, vol. 32, no. 8, pp. 2016–2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miller, L.P., Crawford, J.T., and Shinnick, T.M., The rpoB gene of Mycobacterium tuberculosis, Antimicrob. Agents. Ch., 1994, vol. 38, no. 4, pp. 805–811.

    Article  CAS  Google Scholar 

  34. Ouoba, L.I., Lei, V., and Jensen, L.B., Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria, Int. J. Food. Microbiol., 2008, vol. 121, no. 2, pp. 217–224.

    Article  CAS  PubMed  Google Scholar 

  35. Pecavar, V., Blaschitz, M., Hufnagl, P., Zeinzinger, J., Fiedler, A., Allerberger, F., Maass, M., and Indra, A., High-resolution melting analysis of the single nucleotide polymorphism hot-spot region in the rpoB gene as an indicator of reduced susceptibility to rifaximin in Clostridium difficile, J. Med. Microbiol., 2012, vol. 61, pp. 780–785. https://doi.org/10.1099/jmm.0.041087-0

    Article  CAS  PubMed  Google Scholar 

  36. Salyers, A.A., Gupta, A., and Wang, Y., Human intestinal bacteria as reservoirs for antibiotic resistance genes, Trends Microbiol., 2004, vol. 12, no. 9, pp. 412–416.

    Article  CAS  PubMed  Google Scholar 

  37. Seemann T., Prokka: rapid prokaryotic genome annotation, Bioinformatics (Oxford, England), 2014, vol. 30, no. 14, pp. 2068–2069.

    CAS  PubMed  Google Scholar 

  38. Stock, A.M., Robinson, V.L., and Goudreau, P.N., Two-component signal transduction, Annu. Rev. Biochem., 2000, vol. 69, pp. 183–215. https://doi.org/10.1146/annurev.biochem.69.1.183

    Article  CAS  PubMed  Google Scholar 

  39. Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L., Lomsadze, A., Pruitt, K.D., Borodovsky, M., and Ostell, J., NCBI prokaryotic genome annotation pipeline, Nucleic. Acids Res., 2016, vol. 44, no. 14, pp. 6614–6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Temmerman, R., Pot, B., Huys, G., and Swings, J., Identification and antibiotic susceptibility of bacterial isolates from probiotic products, Int. J. Food. Microbiol., 2003, vol. 81, no. 1, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  41. Teuber, M., Meile, L., and Schwarz, F., Acquired antibiotic resistance in lactic acid bacteria from food, Antonie Van Leeuwenhoek, 1999, vol. 76, nos. 1−4, pp. 115–137.

    Article  CAS  Google Scholar 

  42. Vaňousová, K., Beranová, J., Fišer, R., Jemioła-Rzemińska, M., Matyska Lišková, P., Cybulski, L., Strzałka, K., and Konopásek, I., Membrane fluidization by alcohols inhibits DesK-DesR signalling in Bacillus subtilis, Biochim. Biophys. Acta Biomembr., 2018, vol. 1860, no. 3, pp. 718–727.

    Article  PubMed  Google Scholar 

  43. Wilson, D.N., Hauryliuk, V., Atkinson, G.C., and O’Neill, A.J., Target protection as a key antibiotic resistance mechanism, Nat. Rev. Microbiol., 2020, vol. 18, no. 11, pp. 637–648.

    Article  CAS  PubMed  Google Scholar 

  44. Wright, G.D., The antibiotic resistome: the nexus of chemical and genetic diversity, Nat. Rev. Microbiol., 2007, vol. 5, no. 3, pp. 175–186.

    Article  CAS  PubMed  Google Scholar 

  45. Wu, S., Zhu, Z., Fu, L., Niu, B., and Li, W., WebMGA: a customizable web server for fast metagenomic sequence analysis, BMC Genomics, 2011, vol. 12, p. 444. https://doi.org/10.1186/1471-2164-12-444

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yoshida, K., Ohki, Y. H., Murata, M., Kinehara, M., Matsuoka, H., Satomura, T., Ohki, R., Kumano, M., Yamane, K., and Fujita, Y., Bacillus subtilis lmrA is a repressor of the lmrAB and yxaGH operons: identification of its binding site and functional analysis of lmrB and yxaGH, J. Bacteriol., 2004, vol. 186, no. 17, pp. 5640–5648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu, J.H., Wang, B.W., Pan, M., Zeng, Y.N., Rego, H., and Javid, B., Rifampicin can induce antibiotic tolerance in mycobacteria via paradoxical changes in rpoB transcription, Nat. Commun., 2018, vol. 9, no. 1, p. 4218.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed at the Tianjin University of Science and Technology and Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences.

Funding

This work was supported by Tianjin One Belt and One Road Technological Innovation Project 583 (18PTZWHZ00080), and the National Key Research and Development Program (2016YFD0400401-2).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by D.D. Li, Y. San, Q. Xing, H. Hu, A.Q. Wang, M. Li. The first draft of the manuscript was written by Q.H. Wu, S.C.L. Wu and P. Strappe. The conceptualization, writing–review and editing were performed by Z.K. Zhou. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Z. K. Zhou.

Ethics declarations

All authors declare that there is no any conflict of competing interest regarding this article.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q.H., Li, D.D., Wu, S.C. et al. Whole Genome Sequencing of Levilactobacillus brevis HQ1-1 for Understanding the Characteristics of Its Antibiotic Resistance Genes. Microbiology 92, 358–369 (2023). https://doi.org/10.1134/S0026261722601191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722601191

Keywords:

Navigation