Skip to main content
Log in

Determination of the Promising Microalgal Strain for Bioremediation of the Aquaculture Wastewater

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Applicability of three strains of green microalgae (Chlorella vulgaris SP BB-2, Parachlorella kessleri, and Chlamydomonas reinhardtii Dangeard СС-124) for bioremediation (contaminants removal) of aquaculture wastewater was investigated. C. vulgaris strain SP BB-2 exhibited the highest growth rate and biomass accumulation. This strain was found to utilize nitrogen and phosphorus from wastewater for growth and development and showed high efficiency according to chemical oxygen demand (COD). Moreover, among the studied strains, C. vulgaris SP BB-2 produced biomass with the highest protein content, which may be recommended as a feed additive for the aquaculture. Analysis of the induction and rapid light curves of chlorophyll fluorescence revealed alterations in the energy storage photosynthetic processes of C. vulgaris SP BB-2 cells when grown on the aquaculture wastewater. Thus, high values of the maximum quantum yield of primary photochemistry in photosystem II (PSII) (FV/FM), quantum yield of electron transport (φEo), PSII performance index on absorption basis (PIABS), and the light utilization coefficient (α) were observed. C. vulgaris strain SP BB-2 may be recommended for wastewater treatment, while its highly sensitive parameters of chlorophyll fluorescence induction (PIABS, φEo) may be used as indicators of the state of the microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bohutskyi, P., Liu, K., Nasr, L.K., Byers, N., Rosenberg, J.N., Oyler, G.A., Betenbaugh, M.J., and Bouwer, E.J., Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate, Appl. Microbiol. Biotechnol., 2015, vol. 99, pp. 6139‒6154.

    Article  CAS  Google Scholar 

  2. Cabanelas, I.T.D., Ruiz, J., Arbib, Z., Chinalia, F.A., Garrido-Pérez, C., Rogalla, F., Nascimento, I.A., and Perales, J.A., Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal, Bioresour. Technol., 2013, vol. 131, pp. 429–436.

    Article  CAS  Google Scholar 

  3. Caporgno, M.P., Taleb, A., Olkiewicz, M., Font, J., Pruvost, J., Legrand, J., and Bengoa, C., Microalgae cultivation in urban wastewater: nutrient removal and biomass production for biodiesel and methane, Algal Res., 2015, vol. 10, pp. 232–239.

    Article  Google Scholar 

  4. Clesceri, L.S., Greenberg, A.E., and Eaton, A.D., Standard Methods for the Examination of Water and Wastewater, Washington, D.C.: APHA-AWWA-WEF, 1998. 20th ed.

    Google Scholar 

  5. Cogan, E.B., Birrell, G.B., and Griffith, O.H., A robotics-based automated assay for inorganic and organic phosphates, Anal. Biochem., 1999, vol. 271, pp. 29‒35.

    Article  CAS  Google Scholar 

  6. Delgadillo-Mirquez, L., Lopes, F., Taidi, B., and Pareau, D., Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture, Biotechnol. Rep., 2016, vol. 11, pp. 18–26.

    Article  Google Scholar 

  7. Dickinson, K.E., Whitney, C.G., and Mcginn, P.J., Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus sp. AMDD, Algal Res., 2013, vol. 2, pp. 127–134.

    Article  Google Scholar 

  8. Dubois, M., Gilles, K., and Hamilton, J.A., Colorimetric method for the determination of sugars, Nature, 1951, vol. 168, p. 167.

    Article  CAS  Google Scholar 

  9. Gao, F., Li, C., Yang, Z.H., Zeng, G.M., Feng, L.J., Liu, J.Z., Liu, M., and Cai, H.W., Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal, Ecol. Eng., 2016, vol. 92, pp. 55–61.

    Article  Google Scholar 

  10. Guldhe, A., Ansari, F.A., Singh, P., and Bux, F., Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation, Ecol. Eng., 2017, vol. 99, pp. 47–53.

    Article  Google Scholar 

  11. Guo, Z., Liu, Y., Guo, H., Yan, S., and Mu, J., Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production, J. Environ. Sci., 2013, vol. 25, pp. S85–S88.

    Article  Google Scholar 

  12. Hu, B., Min, M., Zhou, W., Li, Y., Mohr, M., and Cheng, Y., Influence of exogenous CO2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater, App-l. Biochem. Biotechnol., 2012, vol. 166, pp. 1661–1673.

    Article  CAS  Google Scholar 

  13. Kalaji, H.M., Schansker, G., Ladle, R.J., Kalaji, V., Bosa, K., Allakhverdiev, S., Elsheery, N.I., Ferroni, L., Guidi, L., Hogewoning, S.W., Jajoo, A., Misra, A.N., Nebauer, S.G., Pancaldi, S., Penella, C., et al., Frequently asked questions about in vivo chlorophyll fluorescence: practical issues, Photosynth. Res., 2014, vol. 122, pp. 121–158.

    Article  CAS  Google Scholar 

  14. Lazár, D. and Schansker, G., Models of chlorophyll a fluorescence transients, in Photosynthesis in silico, Springer Netherlands, 2009, vol. 29, pp. 85–123.

    Google Scholar 

  15. Lee, Y., Chen, W., Shen, H., Han, D., Li, Y., Jones, H.D.T., Timlin, J.A., and Hu, Q., Basic culturing and analytical measurement techniques, in Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Richmond, A. and Hu, Q., Eds., New York: Blackwell, 2013, pp. 37–68.

    Google Scholar 

  16. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the folin-phenol reagents, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    Article  CAS  Google Scholar 

  17. Malla, F.A., Khan, S.A., Sharma, G.K., Gupta, N., and Abraham, G., Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production, Ecol. Eng., 2015, vol. 75, pp. 343–349.

    Article  Google Scholar 

  18. Marsh, J.B. and Weinstein, D.B., Simple charring method for determination of lipids, J. Lipid Res., 1966, vol. 7, pp. 574–576.

    Article  CAS  Google Scholar 

  19. Mata, T.M., Melo, A.C., Simões, M., and Caetano, N.S., Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus, Bioresour. Technol., 2012, vol. 107, pp. 151–158.

    Article  CAS  Google Scholar 

  20. Matorin, D.N. and Rubin, A.B., Fluorescenciya khlorofilla vysshikh rastenii i vodoroslei (Chlorophyll Fluorescence in Higher Plants and Algae), Moscow-Izhevsk: Institute of Computer Research, 2012.

  21. Mohsenpour, S.F., Hennige, S., Willoughby, N., Adeloye, A., and Gutierrez, T., Integrating micro-algae into wastewater treatment: a review, Sci. Total Environ., 2021, vol. 752. pp. 142–168. https://doi.org/10.1016/j.scitotenv.2020.142168

    Article  CAS  Google Scholar 

  22. Nayak, M., Karemore, A., and Sen, R., Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application, Algal Res., 2016, vol. 16, pp. 216–223.

    Article  Google Scholar 

  23. Prašil, O. and Borowitzka, M.A., Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, Dordrecht: Springer, 2011.

    Google Scholar 

  24. Reitan, K.I., Rainuzzo, J.R., Øie, G., and Olsen, Y., A review of the nutritional effects of algae in marine fish larvae, Aquaculture, 1997, vol. 155, pp. 207–221.

    Article  Google Scholar 

  25. Schreiber, U., Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, Papageorgiou, G. and Govindjee, Eds., Dordrecht: Springer, 2004, pp. 279–319.

  26. Strasser, R.J., Tsimilli-Michael, M., and Srivastava, A., Analysis of the chlorophyll a fluorescence transient, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, Papageorgiou, G. and Govindjee, Eds., Dordrecht: Springer, 2004, pp. 321–362.

  27. Subramaniyam, V., Ramraj, S., and Ganeshkumar, V., Bioresource technology cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass, Bioresour. Technol., 2016, vol. 211, pp. 698–703.

    Article  CAS  Google Scholar 

  28. Wang, H., Xiong, H., Hui, Z., and Zeng, X., Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids, Bioresour. Technol., 2012, vol. 104, pp. 215–220.

    Article  CAS  Google Scholar 

  29. Zayadan, B.K., Akmukhanova, N.R., and Sadvakasova, A.K., Katalog kollektsii kul’tur mikrovodoroslei i cianobakterii (Catalog of the Microalgae and Cyanobacteria Cultures), Almaty: Abzal-Ai, 2017.

  30. Zhang, T.Y., Wu, Y.H., and Hu, H.Y., Domestic wastewater treatment and biofuel production by using microalga Scenedesmus sp. ZTY1, Water Sci. Technol., 2014, vol. 69, pp. 2492–2496.

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the Moscow State University Development Program “Future of the Planet and Global Environmental Changes” and was supported by the Russian Foundation for Basic Research, project no. 20-04-00465, and by the Russian Science Foundation, project no. 20-64-46018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Matorin.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Abbreviations: RC, reaction center; PSII, photosystem II.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akmukhanova, N.R., Zayadan, B.K., Sadvakasova, A.K. et al. Determination of the Promising Microalgal Strain for Bioremediation of the Aquaculture Wastewater. Microbiology 91, 533–541 (2022). https://doi.org/10.1134/S0026261722601166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722601166

Keywords:

Navigation