Skip to main content

Corrosion Behavior of Galvanized Steel Exposed to Fusarium oxysporum f. sp. cumini Isolated from a Natural Biofilm

Abstract

Fusarium spp. are prevalent fungi in water systems and also in biofilm layers developing upon metal surfaces associated with these systems. The present study investigated (i) the presence of Fusarium sp. in biofilms on galvanized steel surface exposed to potable water, and (ii) the effect of Fusarium sp. on corrosion behaviour of galvanized steel by electrochemical methods. The natural biofilm was formed on the galvanized steel surface in a laboratory-scaled test system. Molecular characterization of the tentative Fusarium isolate was carried out by sequencing of the internal transcribed spacer (ITS) regions. The metal coupons were exposed for 336 h to potato dextrose broth medium inoculated with Fusarium sp. The biofilm formation and corrosion products on the metal surfaces were investigated by scanning electron microscopy. The ITS sequences showed that the Fusarium sp. isolate was closely related to Fusarium oxysporum f. sp. cumini (98.97%). The electrochemical analysis revealed that although the test medium was corrosive for the metal, the presence of F. oxysporum f. sp. cumini accelerated the corrosion of galvanized steel. According to the results, this is the first study showing the presence of Fusarium sp. in the natural biofilm formed on the galvanized steel surface and also the effect of Fusarium sp. on corrosion behavior of the galvanized steel in aqueous environment.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Al-Hatmi, A.M., Meletiadis, J., Curfs-Breuker, I., Bonifaz, A., Meis, J.F., and De Hoog, G.S., In vitro combinations of natamycin with voriconazole, itraconazole and micafungin against clinical Fusarium strains causing keratitis, J. Antimicrob. Chemother., 2016, vol. 71, pp. 953–955.

    Article  Google Scholar 

  2. ASTM G1-72 (American Testing Materials Association) Standard, Standard Practice for Preparing, Cleaning, and Evaluation Corrosion Test Specimens, 1999, pp. 15–21.

  3. Babic, M.N., Zalar, P., Zenko, B., Schroers, H., Dzeroski, S., and Gunde-Cimerman, N., Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines, Fungal Biol., 2015, vol. 119, nos. 2−3, pp. 95–113.

    Article  Google Scholar 

  4. Blanc, C., Orazem, M.E., Pebere, N., Tribollet, B., Vivier, V., and Wu, S., The origin of the complex character of the ohmic impedance, Electrochim. Acta, 2010, vol. 55, pp. 6313–6321.

    CAS  Article  Google Scholar 

  5. Campanac, C., Pineau, L., Payard, A., Baziard-Mouysset, G., and Roques, C., Interactions between biocide cationic agents and bacterial biofilms, Antimicrob. Agents Chemother., 2002, vol. 46, pp. 1469–1474.

    CAS  Article  Google Scholar 

  6. De Leo, F., Campanella, G., Proverbio, E., and Urzi, C., Laboratory tests of fungal biocorrosion of unbonded lubricated post-tensioned tendons, Constr. Build. Mater., 2013, vol. 49, pp. 821–827.

    CAS  Article  Google Scholar 

  7. De Moura Rovetta, S., Abdalla, A.J., Baggio Scheid, V.H., Khouri, S., Otani, C., and Miyakawa, W., Fungi influenced corrosion on nitrocarburized multiphase 4340 steel, Rev. Bras. Apl. Vacuo, 2013, vol. 32, nos. 1−2, pp. 7–11.

    Google Scholar 

  8. Elkhawaga, M.A., Morphological and metabolic response of Aspergillus nidulans and Fusarium oxysporum to heavy metal stress, Res. J. Appl. Sci., 2011, vol. 7, no. 11, pp. 1737–1745.

    CAS  Google Scholar 

  9. Gagnon, G.A. and Slawson, R.M., An efficient biofilm removal method for bacterial cells exposed to drinking water, J. Microbiol. Methods, 1999, vol. 34, pp. 203–221.

    Article  Google Scholar 

  10. Göksay Kadaifciler, D. and Demirel, R., Fungal biodiversity and mycotoxigenic fungi in cooling tower water systems in Istanbul, Turkey, J. Water Health, 2017, vol. 15, pp. 308–320.

    Article  Google Scholar 

  11. Hamlaoui, Y., Pedraza, F., and Tifouti, L., Corrosion monitoring of galvanized coatings through electrochemical impedance spectroscopy, Corros. Sci., 2008, vol. 50, pp. 1558–1566.

    CAS  Article  Google Scholar 

  12. Ilhan-Sungur, E. and Cotuk, A., Microbial corrosion of galvanized steel in a simulated recirculating cooling tower system, Corros. Sci., 2010, vol. 52, pp. 161–171.

    CAS  Article  Google Scholar 

  13. Itagaki, M., Taya, A., Watanabe, K., and Noda, K., Deviations of capacitive and inductive loops in the electrochemical impedance of a dissolving iron electrode, Anal. Sci., 2002, vol. 18, pp. 641–644.

    CAS  Article  Google Scholar 

  14. Jorgensen, H., Eriksson, T., Börjesson, J., Tjerneld, F., and Olsson, L., Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888, Enzyme Microb. Technol., 2003, vol. 32, pp. 851–861.

    CAS  Google Scholar 

  15. Juzeliunas, E., Ramanauskas, R., Lugauskas, A., Samulevieiene, M., Leinartas, K., Ivaskevie, E., and Peeiulyte, D., Investigation of microbiologically influenced corrosion 3. Two-year exposure of aluminium to Penicillium frequentans, Aspergillus niger and Bacillus mycoides, Che-mija, 2005, vol. 16, pp. 12–17.

    CAS  Google Scholar 

  16. Leslie, J.F. and Summerell, B.A., The Fusarium Laboratory Manual, Hoboken, NJ: Blackwell, 2006.

    Book  Google Scholar 

  17. Little, B., Staehle, R., and Davis, R., Fungal influenced corrosion of post-tensioned cables, Int. Biodeter. Biodegr., 2001, vol. 47, pp. 71–77.

    CAS  Article  Google Scholar 

  18. Liu, S., Wang, B., and Zhang, P., Effect of glucose concentration on electrochemical corrosion behavior of pure titanium TA2 in Hanks’ simulated body fluid, Materials, 2016, vol. 9, no. 11, p. 874.

    Article  Google Scholar 

  19. Liu, X., Cheng, Y., Guan, Z., and Zheng, Y., Exploring the effect of amino acid and glucose on the biodegradation of pure Zn, Corros. Sci., 2020, vol. 170, no. 1, p. 108661.

    CAS  Article  Google Scholar 

  20. Markeberg, R., Carlsen, M., and Nielsen, J., Induction and repression of a-amylase production in batch and continuous cultures of Aspergillus oryzae, Microbiology (GSM), 1995, vol. 141, pp. 2449–2454.

    Article  Google Scholar 

  21. Meng, Y., Liu, L., Zhang, D., Dong, C., Yan, T., Volinsky, A.A., and Wang, L.N., Initial formation of corrosion products on pure zinc in saline solution, Bioact. Mater., 2019, vol. 4, pp. 87–96.

    Article  Google Scholar 

  22. Panagiotu, G., Villas-Boas, S.G., Christakopoulos, P., Nielsen, J., and Oolson, L., Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol, J. Biotechnol., 2005, vol. 115, pp. 425–434.

    Article  Google Scholar 

  23. Patel, P.N., Prasad, N., Mathur, R.L., and Mathur, B.L., Fusarium wilt of cumin, Curr. Sci., 1957, vol. 26, no. 6, pp. 181–182.

    Google Scholar 

  24. Qu, Q., Wang, L., Li, L., He, Y., Yang, M., and Ding, Z., Effect of the fungus Aspergillus niger on the corrosion behavior of AZ31B magnesium alloy in artificial seawater, Corros. Sci., 2015, vol. 98, pp. 249–259.

    CAS  Article  Google Scholar 

  25. Qu, Q., Li, S., Li, L., Zuo, L., Ran, X., Qu, Y., and Zhu, B., Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater, Corros. Sci., 2017, vol. 118, pp. 12–23.

    CAS  Article  Google Scholar 

  26. Samson, R.A., Houbraken, J., Thrane, U., Frisvad, J.C., and Ve Andersen, B., Food and Indoor Fungi, Utrecht: CBS KNAW Fungal Diversity Centre Press, 2010, pp. 19–30.

    Google Scholar 

  27. Schoffelmeer, E.A.M., Klis, F.M., Sietsma, J.H., and Cornelissen, B.J.C., The cell wall of Fusarium oxysporum, Fungal Genet. Biol., 1999, vol. 27, pp. 275–282.

    CAS  Article  Google Scholar 

  28. Souto, R.M., Santana, J.J., Marques, A.G., and Simoes, A.M., Local electrochemical impedance spectroscopy investigation of corrosion inhibitor films on copper, ECS Trans., 2012, vol. 41, no. 25, pp. 227–235.

    CAS  Article  Google Scholar 

  29. Sautour, M., Edel-Hermann, V., Steinberg, C., Sixt, N., Laurent, J., Dalle, F., Aho, S., Hartemann, P., L’Ollivier, C., Goyer, M., and Bonnin, A., Fusarium species recovered from the water distribution system of a French university hospital, Int. J. Hyg. Environ. Health, 2012, vol. 215, pp. 286–292.

    Article  Google Scholar 

  30. Sun, H., Liu, S., and Sun, L., A comparative study on the corrosion of galvanized steel under simulated rust layer solution with and without 3.5 wt %NaCl, Int. J. Electrochem. Sci., 2013, vol. 8, pp. 3494–3509.

    CAS  Google Scholar 

  31. Üstüntürk-Onan, M., Hoca, S., and Ilhan-Sungur, E., The effect of short-term drying on biofilm formed in a model water distribution system, Microbiology (Moscow), 2018, vol. 87, no. 6, pp. 857–864.

    Article  Google Scholar 

  32. Zhang, D., Qian, H., Xiao, K., Zhou, F., Liu, Z., and Li, X., Corrosion inhibition of 304 stainless steel by Paecilomyces variotii and Aspergillus niger in aqueous environment, Corros. Eng. Sci. Technol., 2016, vol. 51, pp. 1–6.

    Article  Google Scholar 

Download references

Funding

This study was funded by Scientific Research Projects Coordination Unit of Istanbul University. Project Number: FBA-2020-35713.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ilhan-Sungur.

Ethics declarations

The authors declare that they have no conflict of interest.

The authors declare that animals were not used in the experiments.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kadaifçiler, D., Danışman, M., Arslan-Vatansever, D. et al. Corrosion Behavior of Galvanized Steel Exposed to Fusarium oxysporum f. sp. cumini Isolated from a Natural Biofilm. Microbiology 91, 445–453 (2022). https://doi.org/10.1134/S0026261722300221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722300221

Keywords:

  • Fusarium oxysporum f. sp. cumini
  • galvanized steel
  • glucose
  • microbiologically induced corrosion (MIC)
  • natural biofilm
  • potable water