Skip to main content

Carotenoids in LH2 Complexes from Allochromatium vinosum under Illumination Are Able to Generate Singlet Oxygen Which Oxidizes BChl850

Abstract

The interaction of singlet oxygen with bacteriochlorophyll (BChl) in the membranes, LH2 light-harvesting complexes and pigment extracts from Allochromatium (Alc.) vinosum strain MSU (previously Alc. minutissimum) was studied. The ability of carotenoids illuminated with light within their absorption region to generate singlet oxygen, which oxidizes BChl, was confirmed; BChl itself was not active in this process and acted a target for singlet oxygen. A sharp decrease in the amount of oxidized BChl in the LH2 complex under illumination in the carotenoid region was noted only at the carotenoid/complex ratio of about 0.1, i.e., when there is less than 1 carotenoid molecule per 10 LH2 complexes. It is assumed that carotenoids from the early stages of biosynthesis (neurosporene, ζ-carotene) are more active in the generation of singlet oxygen under illumination than more mature carotenoids. BChl photooxidation in LH2 complexes occurred only in the presence of oxygen. A decrease in oxygen concentration by 7 or more times resulted in a slowdown of the process or its complete stop. In model systems (pigment extract of the LH2 complex retaining the BChl/carotenoids ratio), BChl under illumination becomes both the main generator of singlet oxygen and a target for the action of the latter. Under these conditions, carotenoids do not protect BChl from oxidation. The ability of BChl850 in the LH2 complex to be oxidized by singlet oxygen suggests that it can be used as a natural sensor for this agent.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Arellano, J.B., Yousef, Y.A., Melø, T.B., Mahamad, S.B.B., Cogdell, R.J., and Naqvi, K.R., Formation and geminate quenching of singlet oxygen in purple bacterial reaction center, J. Photochem. Photobiol. B Biol., 2007, vol. 87, pp. 105–112. https://doi.org/10.1016/j.jphotobiol.2007.03.004

    CAS  Article  Google Scholar 

  2. Ashikhmin, A.A., Makhneva, Z.K., and Moskalenko, A.A., The LH2 complexes are assembled in the cells of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with inhibition of carotenoid biosynthesis, Phot. Res., 2014, vol. 119, pp. 291–303. https://doi.org/10.1007/s11120-013-9947-6

    CAS  Article  Google Scholar 

  3. Britton, G., Functions of intact carotenoids, in Carotenoids. Natural Functions, Britton, G., Liaaen-Jensen, S., and Pfander, H., Eds., Birkhauser, 2008, pp. 265–308.

    Google Scholar 

  4. Cogdell, R. and Frank, H., How carotenoids function in photosynthetic bacteria, Biochim. Biophys. Acta, 1987, vol. 895, pp. 63‒79.

    CAS  Article  Google Scholar 

  5. Cogdell, R.J., Howard, T.D., Bittl, R., Schlodder, E., Geisenheimer, I., and Lubitz, W., How carotenoids protect bacterial photosynthesis, Philosoph. Trans. Royal Soc. B: B-iol. Sci., 2000, vol. 355, pp. 1345–1349. https://doi.org/10.1098/rstb.2000.0696

    CAS  Article  Google Scholar 

  6. Frank, H. and Cogdell, R., Carotenoids in photosynthesis, Photochem. Photobiol., 1996, vol. 63, pp. 257–264. https://doi.org/10.1111/j.1751-1097.1996.tb03022.x

    CAS  Article  PubMed  Google Scholar 

  7. Freer, A., Prince, S., Sauer, K., Papiz, M., Hawthornthwaite-Lawless, A., McDermott, G., Cogdell R., and Isaacs, N., Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila, Structure, 1996, vol. 4, pp. 449–462. https://doi.org/10.1016/S0969-2126(96)00050-0

    CAS  Article  PubMed  Google Scholar 

  8. Gabrielsen, M., Gardiner, A., and Cogdell, R., Peripheral complexes of purple bacteria, in Advances in Photosynthesis and Respiration. The Purple Phototrophic Bacteria, Hunter, C.N., Daldal, F., Thurnauer, M.C., and Beat-ty, J.T., Dordrecht: Springer, 2009, vol. 28, pp. 135‒153.

  9. Griffiths, M., Sistrom, W., Cohen-Bazire, G., and Stanier, R., Functions of carotenoids in photosynthesis, Nature, 1955, vol. 176, pp. 1211–1215. https://doi.org/10.1038/1761211a0

    CAS  Article  PubMed  Google Scholar 

  10. Hunter, C.N., Genetic manipulation of antenna complexes of purple bacteria, in Anoxygenic Photosynthetic Bacteria, Blankenship, R.E., Madigan, M.T., and Bauer, C.E., Eds., Dordrecht, Netherlands: Kluwer, 1995, pp. 473–501.

    Google Scholar 

  11. Leiger, K., Linnanto, J.M., Rätsep, M., Timpmann, K., Ashikhmin, A.A., Moskalenko, A.A., Fufina, T., Gabdulkhakov, A., and Freiberg, A., Controlling photosynthetic excitons by selective pigment photooxidation, J. Phys. Chem. B., 2019, vol. 123, pp. 29–38. https://doi.org/10.1021/acs.jpcb.8b08083

    CAS  Article  PubMed  Google Scholar 

  12. Limantara, L., Koehler, P., Wilhelm, B., Porra, R.J., and Scheer, H., Photostability of bacteriochlorophyll a and derivatives: potential sensitizers for photodynamic tumor therapy, Photochem. Photobiol., 2006, vol. 82, pp. 770–780. https://doi.org/10.1562/2005-09-07-RA-676

    CAS  Article  PubMed  Google Scholar 

  13. Lӧhner, A., Carey, A.M., Hacking, K., Picken, N., Kelly, S., Cogdel, R., and Kohler, J., The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum, Photosynth. Res., 2015, vol. 123, pp. 23‒31. https://doi.org/10.1016/j.bbabio.2014.07.022

    CAS  Article  Google Scholar 

  14. Makhneva, Z., Bolshakov, M., and Moskalenko, A., Carotenoids do not protect bacteriochlorophylls in isolated light-harvesting LH2 complexes of photosynthetic bacteria from destructive interactions with singlet oxygen, Molecules, 2021, vol. 26, p. 5120. https://doi.org/10.3390/molecules26175120

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Makhneva, Z., Bolshakov, M., and Moskalenko, A., Heterogeneity of carotenoid content and composition in LH2 of the sulphur purple bacterium Allochromatium minutissimum grown under carotenoid-biosynthesis inhibition, Phot. Res., 2008, vol. 98, pp. 633–641. https://doi.org/10.1007/s11120-008-9384-0

    CAS  Article  Google Scholar 

  16. Makhneva, Z., Bolshakov, M., and Moskalenko, A., Heterogeneity of carotenoid content and composition in LH2 of the sulphur purple bacterium Allochromatium minutissimum grown under carotenoid-biosynthesis inhibition, Phot. Res., 2008, vol. 98, pp. 633–641. https://doi.org/10.1007/s11120-008-9384-0

    CAS  Article  Google Scholar 

  17. Makhneva, Z.K., Ashikhmin, A.A., Bolshakov, M.A., and Moskalenko, A.A., 3-Acetyl-chlorophyll formation in light-harvesting complexes of purple bacteria by chemical oxidation, Biochemistry (Moscow), 2016, vol. 81, pp. 176–186.

    CAS  PubMed  Google Scholar 

  18. Makhneva, Z.K., Ashikhmin, A.A., Bolshakov, M.A., and Moskalenko, A.A., Bacteriochlorophyll interaction with singlet oxygen in membranes of purple photosynthetic bacteria: does the protective function of carotenoids exist?, Doklady Biochem. Biophys., 2019a, vol. 486, no. 1, pp. 216–219. https://doi.org/10.31857/S0869-56524864504-508

    CAS  Article  Google Scholar 

  19. Makhneva, Z.K., Ashikhmin, A.A., Bolshakov, M.A., and Moskalenko, A.A., Carotenoids are probably involved in singlet oxygen generation in the membranes of purple photosynthetic bacteria under light irradiation, Microbiology (Moscow), 2020, vol. 89, pp. 164–173. https://doi.org/10.1134/S0026261720010099

    CAS  Article  Google Scholar 

  20. Makhneva, Z.K., Ashikhmin, A.A., Bolshakov, M.A., and Moskalenko, A.A. Quenchers protect BChl850 from action of singlet oxygen in the membranes of a sulfur photosynthetic bacterium Allochromatium vinosum strain MSU, Microbiology (Moscow), 2019b, vol. 88, pp. 79–86.

    CAS  Article  Google Scholar 

  21. Moskalenko, A.A. and Makhneva, Z.K., Light-harvesting complexes from purple sulfur bacteria Allochromatium minutissimum assembled without carotenoids, J. Photochem. Photobiol., 2012, vol. 108, pp. 1‒7. https://doi.org/10.1016/j.jphotobiol.2011.11.006

    CAS  Article  Google Scholar 

  22. Moskalenko, A.A., Makhneva, Z.K., Fiedor, L., and Scheer, H., Effects of carotenoid inhibition on the photosynthetic RC–LH1 complex in purple sulphur bacterium Thiorhodospira sibirica, Phot. Res., 2005, vol. 86, pp. 71–80. https://doi.org/10.1007/s11120-005-4473-9

    CAS  Article  Google Scholar 

  23. Niedzwiedzki, D.M., Swainsbury, D.J.K., Canniffe, D.P., Hunter, C.N., and Hitchcock, A.A., Photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection, Proc. Natl. Acad. Sci. U. S. A., 2020, vol. 117, pp. 6502–6508. https://doi.org/10.1073/pnas.1920923117

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Papiz, M., Prince, S., Howard, T., Cogdell, R., and Isaacs, N., The structure and thermal motion of the B800-850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: new structural features and functionally relevant motions, J. Mol. Biol., 2003, vol. 326, pp. 1523–1538. https://doi.org/10.1016/s0022-2836(03)00024-x

    CAS  Article  PubMed  Google Scholar 

  25. Polívka, T. and Frank, H., Molecular factors controlling photosynthetic light harvesting by carotenoids, Acc. Chem. Res., 2010, vol. 43, pp. 1125–1134. https://doi.org/10.1021/ar100030m

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Prince, S., Howard, T., Myles, D., Wilkinson, C., Papiz, M., Freer, A., Cogdell, R., and Isaacs, N., Detergent structure in crystals of the integral membrane light-harvesting complex LH2 from Rhodopseudomonas acidophila strain 10050, J. Mol. Biol., 2003, vol. 326, pp. 307–315. https://doi.org/10.1016/s0022-2836(02)01361-x

    CAS  Article  PubMed  Google Scholar 

  27. Prince, S., Papiz, M., Freer, A., McDermott, G., Hawthornthwaite-Lawless, A., Cogdell, R., and Isaacs, N., Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: modular assembly and protein pigment interactions, J. Mol. Biol., 1997, vol. 268, pp. 412–423. https://doi.org/10.1006/jmbi.1997.0966

    CAS  Article  PubMed  Google Scholar 

  28. Redmond, R.W. and Gamlin, J.N., A compilation of singlet oxygen yields from biologically relevant molecules, Photochem. Photobiol., 1999, vol. 70, pp. 391–475. https://doi.org/10.1111/j.1751-1097.1999.tb08240.x

    CAS  Article  PubMed  Google Scholar 

  29. Schmidt, R., Deactivation of O2(1Δg) singlet oxygen by carotenoids: internal conversion of excited encounter complexes, J. Phys. Chem. A., 2004, vol. 108, pp. 5509–5513. https://doi.org/10.1021/jp048958u

    CAS  Article  Google Scholar 

  30. Tamura, H., and Ishikita, H., Quenching of singlet oxygen by carotenoids via ultrafast super-exchange dynamics, J. Phys. Chem. A, 2020, vol. 124, pp. 5081–5088. https://doi.org/10.1021/acs.jpca.0c02228

    CAS  Article  PubMed  Google Scholar 

  31. Uchoa, A.F., Knox, P.P., Turchielle, R., Seifullina, N.Kh., and Baptista, S.M., Singlet oxygen generation in the reaction centers of Rhodobacter sphaeroides, Eur. Biophys. J., 2008, vol. 37, pp. 843–850. https://doi.org/10.1007/s00249-008-0287-y

    CAS  Article  PubMed  Google Scholar 

  32. Uragami, C., Sato, H., Yukihira, N., Fujiwara, M., Kosumi, D., Gardiner, A., Cogdell, R., and Hashimoto, H., Photoprotective mechanisms in the core LH1 antenna pigment-protein complex from the purple photosynthetic bacterium, Rhodospirillum rubrum, J. Photoch. Photobiol. A: Chemistry, 2020, vol. 400, art. 112628. https://doi.org/10.1016/j.jphotochem.2020.112628

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Z.A. Zhuravleva (Institute of Basic Biological Problems, Russian Academy of Sciences) for valuable assistance provided in growing the culture of Alc. vinosum strain MSU.

Funding

The work was supported by the state budget of the Institute of Basic Biological Problems, Russian Academy of Sciences, project no. FMRM-2022-0013 “The Unique Ability of Bacterial Carotenoids to Generate Singlet Oxygen under Illumination.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Moskalenko.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Babchenko

Accepted abbreviations: BChl, bacteriochlorophyll; LH, light-harvesting; RC, reaction center; Alc., Allochromatium; AcChl, 3‑acetyl-chlorophyll; DPA, diphenylamine.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makhneva, Z.K., Moskalenko, A.A. Carotenoids in LH2 Complexes from Allochromatium vinosum under Illumination Are Able to Generate Singlet Oxygen Which Oxidizes BChl850. Microbiology 91, 409–416 (2022). https://doi.org/10.1134/S002626172230021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626172230021X

Keywords:

  • photosynthetic bacteria
  • photosynthesis
  • carotenoids
  • LH2 complex
  • singlet oxygen
  • 3-acetyl-chlorophyll