Skip to main content

Introduction of Exogenous Activated Sludge as a Way to Enhance the Efficiency of Nitrogen Removal in the Anammox Process


The effect of introduction of exogenous activated sludge (bioaugmentation) on the activity and composition of the microbial consortium carrying out the nitritation-anammox process in an SBR bioreactor was investigated. Two bioaugmentation strategies were tested: the exogenous sludge was added either immediately after inoculation with the anammox activated sludge or when the stable mode of nitrogen removal was achieved. The share of introduced sludge (by the amount of volatile dry matter) was 28‒35% of the total activated sludge mass. The growth conditions and community composition for activated sludges differed significantly: members of the genera “Candidatus Brocadia” and “Ca. Jettenia” were predominant in the aboriginal sludge, while “Ca. Kuenenia” and “Ca. Jettenia” predominated in the exogenous one. While bioaugmentation at the time of launching resulted in a 15% increase in nitrogen removal efficiency, this positive effect was short-lived (by day 46 of cultivation, the values of nitrogen removal efficiency in the control and experimental reactors were the same). Addition of exogenous activated sludge after the stable nitrogen removal mode was reached (day 53) increased the efficiency of nitrogen removal by 21‒35%, and this difference was maintained until the end of the experiment (90 days). The introduced anammox bacteria did not get acclimatized in the community of the SBR reactor; whatever was the method of their introduction, their abundance decreased to the minimum values. Our data indicate that the efficiency of nitrogen removal by the nitritation-anammox process may be enhanced by introduction of activated sludges differing in both the composition and the cultivation conditions from the aboriginal ones, either at reactor launching or into an actively operating bioreactor.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. Agrawal, S., Seuntjens, D., Cocker, P.D., Lackner, S., and Vlaeminck, S., Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights, Curr. Opin. Biotechnol., 2018, vol. 50, pp. 214–221.

    CAS  Article  Google Scholar 

  2. Ali, M. and Okabe, S., Anammox-based technologies for nitrogen removal: advances in process start-up and remaining issues, Chemosphere, 2015, vol. 141, pp. 144‒153.

    CAS  Article  PubMed  Google Scholar 

  3. Cho, S., Kambey, C., and Nguyen, V.K., Performance of anammox processes for wastewater treatment: a critical review on effects of operational conditions and environmental stresses, Water, 2020, vol. 12, art. 20.

    CAS  Article  Google Scholar 

  4. Gonzalez-Martinez, A., Munoz-Palazon, B., Rodriguez-Sanchez, A., and Gonzalez-Lopez, J., New concepts in anammox processes for wastewater nitrogen removal: recent advances and future prospects, FEMS Microbiol. Lett., 2018, vol. 365. fny031.

    CAS  Article  Google Scholar 

  5. Hasan, M.N., Altaf, M.M., Khan, N.A., Khan, A.H., Khan, A.A., Ahmed, S., Kumar, P.S., Naushad, Mu., Rajapaksha, A.U., Iqbal, J., Tirth, V., and Islam, S., Recent technologies for nutrient removal and recovery from wastewaters: a review, Chemosphere, 2021, vol. 277, art. 130328.

    CAS  Article  PubMed  Google Scholar 

  6. Herrero, M. and Stuckey, D.C., Bioaugmentation and its application in wastewater treatment: a review, Chemosphere, 2015, vol. 140, pp. 119–128.

    CAS  Article  PubMed  Google Scholar 

  7. Izadi, P., Izadi, P., and Eldyasti, A., Towards mainstream deammonification: comprehensive review on potential mainstream applications and developed sidestream technologies, J. Environ. Manag., 2021, vol. 279, art. 111615.

    CAS  Article  Google Scholar 

  8. Jin, R.-C., Zhang, Q.-Q., Zhang, Z.-Z., Liu, J.-H., Yang, B.-E., Guo, L.-X., and Wang, H.-Z., Bio-augmentation for mitigating the impact of transient oxytetracycline shock on anaerobic ammonium oxidation (ANAMMOX) performance, Bioresour. Technol., 2014, vol. 163, pp. 244–253.

    CAS  Article  Google Scholar 

  9. Kallistova, A.Y., Nikolaev, Y.A., Pimenov, N.V., Dorofeev, A.G., Kozlov, M.N., and Kevbrina, M.V., Role of Anammox bacteria in removal of nitrogen compounds from wastewater, Microbiology (Moscow), 2016, vol. 85, pp. 140‒156.

    CAS  Article  Google Scholar 

  10. Kevbrina, M.V., Dorofeev, A.G., Agarev, A.M., Kozlov, M.N, Nikolaev, Yu.A., and Aseeva, V.G., Anammox, a promising technology for nitrogen removal from wastewater, Vodosnab. San. Tekhnika, 2019, no. 5, pp. 28‒35.

  11. Lin, L., Pratt, S., Li, Z., and Ye, L., Adaptation and evolution of freshwater Anammox communities treating saline/brackish wastewater, Water Res., 2021, vol. 207, art. 117815.

    CAS  Article  Google Scholar 

  12. Ma, B., Wang, S., Zhang, S., Li, X., Bao, P., and Peng, Y., Achieving nitritation and phosphorus removal in a continuous-flow anaerobic/oxic reactor through bio-augmentation, Bioresour. Technol., 2013, vol. 139, pp. 375‒378.

    CAS  Article  PubMed  Google Scholar 

  13. Mardanov, A.V., Beletsky, A.V., Ravin, N.V., Botchkova, E.A., Litti, Y.V., and Nozhevnikova, A.N., Genome of a novel bacterium “Candidatus Jettenia ecosi” reconstructed from the metagenome of an anammox bioreactor, Front. Microbiol., 2019, vol. 10, art. 02442.

    Article  Google Scholar 

  14. Miao, Y., Zhang, L., Li, B., Zhang, Q., Wang, S., and Peng, Y., Enhancing ammonium oxidizing bacteria activity was key to single-stage partial nitrification-anammox system treating low-strength sewage under intermittent aeration condition, Bioresour. Technol., 2017, vol. 231, pp. 36‒44.

    CAS  Article  PubMed  Google Scholar 

  15. Morales, N., Val Del Río Á., Vázquez-Padín, J.R., Gutiérrez, R., Fernández-González, R., Icaran, P., Rogalla, F., Campos, J.L., Méndez, R., and Mosquera-Corral, A., Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN, Water Sci. Technol., 2015, vol. 72, pp. 520–527.

    CAS  Article  PubMed  Google Scholar 

  16. Oshiki, M., Satoh, H., and Okabe, S., Ecology and physiology of anaerobic ammonium oxidizing bacteria, Environ. Microbiol., 2016, vol. 18, pp. 2784–2796.

    CAS  Article  Google Scholar 

  17. Pedrouso, A., Vázquez-Padín, J.R., Crutchik, D., and Campos, J.L., Application of anammox-based processes in urban WWTPs: are we on the right track?, Processes, 2021, pp. 9, art. 1334.

  18. Pimenov, N.V., Nikolaev, Yu.A., Dorofeev, A.G., Grachev, V.A., Kallistova, A.Yu., Mironov, V.V., Vanteeva, A.V., Grigor’eva, N.V., Berestovskaya, Yu.Yu., Gruzdev, E.V., Begmatov, Sh.A., Ravin, N.V., and Mardanov, A.V., Bioaugmentation of Anammox activated sludge with a nitrifying bacterial community as a way to increase the nitrogen removal efficiency, Microbiology (Moscow), 2022, vol. 91. no. 2, pp. 126‒135.

    Article  Google Scholar 

  19. Raper, E., Stephenson, T., Anderson, D.R., Fisher, R., and Soares, A., Industrial wastewater treatment through bioaugmentation, Proc. Saf. Environ. Prot., 2018, vol. 118, pp. 178–187.

    CAS  Article  Google Scholar 

  20. Talan, A., Tyagi, R.D., and Drogui, P., Critical review on insight into the impacts of different inhibitors and performance inhibition of anammox process with control strategies, Environ. Technol. Innovat., 2021, vol. 23. 101553.

    CAS  Article  Google Scholar 

  21. Tang, C.J., Zheng, P., Chen, T.T., Mahmood, Q., Zhang, J.Q., Chen, X.G., Ding, S., Chen, J.W., and Wu, D.T., Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process, Water Res., 2011, vol. 45, pp. 201–210.

    CAS  Article  Google Scholar 

  22. Trinh, H.P., Lee, S.-H., Jeong, G., Yoon, H.-J., and Park, H.-D., Recent developments of the mainstream anammox processes: challenges and opportunities, J. Environ. Chem. Engin., 2021, vol. 9, art. 105583.

  23. Wett, B., Omari, A., Podmirseg, S., Han, M., Akintayo, O., Brandon, M.G., Murthy, S., Bott, C., Hell, M., and Takacs, I., Going for mainstream deammonification from bench to full scale for maximized resource efficiency, Water Sci. Technol., 2013, vol. 68, pp. 283–289.

    CAS  Article  Google Scholar 

  24. Wett, B., Podmirseg, S.M., Gómez-Brandón, M., Hell, M., Nyhuis, G., Bott, C., and Murthy, S., Expanding DEMON sidestream deammonification technology towards mainstream application, Water Environ. Res., 2015, vol. 87. 2084–2089.

    CAS  Article  PubMed  Google Scholar 

  25. Yang, Y., Azari, M., Herbold, C.W., Meng, L., Huaihai, C., Xinghua, D., Denecke, M., and Gu, Ji-D., Activities and metabolic versatility of distinct anammox bacteria in a full-scale wastewater treatment system, Water Res., 2021, vol. 206. 11776.

    CAS  Article  Google Scholar 

  26. Zhang, L. and Okabe, S., Ecological niche differentiation among anammox bacteria, Water Res., 2020, vol. 171.

  27. Zhang, L., Narita, Y., Gao, L., Ali, M., Oshiki, M., Ishii, S., and Okabe, S., Microbial competition among anammox bacteria in nitrite-limited bioreactors, Water Res., 2017, vol. 125, pp. 249–258.

    CAS  Article  Google Scholar 

  28. Zhang, L., Zhang, S.J., Gan, Y.P., and Peng, Y.Z., Bio-augmentation to rapid realize partial nitrification of real sewage, Chemosphere, 2012, vol. 88, pp. 1097–1102.

    CAS  Article  Google Scholar 

  29. Zhang, Q.-Q., Yang, G.-F., Sun, K.-K., Tian, G.-M., and Jin, R.-C., Insights into the effects of bio-augmentation on the granule-based anammox process under continuous oxytetracycline stress: Performance and microflora structure, Chem. Engin. J., 2018, vol. 348, pp. 503–513.

    CAS  Article  Google Scholar 

  30. Zhang, Q.-Q., Yang, G.-F., Zhang, L., Zhang, Z.-Z., Tian, G.-M., and Jin, R.-C., Bioaugmentation as a useful strategy for performance enhancement in biological wastewater treatment undergoing different stresses: application and mechanisms, Crit. Rev. Environ. Sci. Technol., 2017, vol. 47, pp. 1877–1899.

    Article  Google Scholar 

  31. Zhu, W., Van Tendeloo, M., Alloul, A., and Vlaeminck, S.E., Towards mainstream partial nitritation/anammox in four seasons: feasibility of bioaugmentation with stored summer sludge for winter anammox assistance, Bioresour. Technol., 2022, vol. 347, art. 126619.

    CAS  Article  Google Scholar 

  32. Zhu, W., Van Tendeloo, M., Xie, Y., Timmer, M.J., Peng, L., and Vlaeminck, S.E., Storage without nitrite or nitrate enables the long-term preservation of full-scale partial nitritation/anammox sludge, Sci. Total Environ., 2022, vol. 806, art. 151330.

    CAS  Article  PubMed  Google Scholar 

Download references


The work was supported by the Russian Science Foundation (project no. 21-64-00019) and the RF Ministry of Science and Higher Education.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yu. A. Nikolaev.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

The authors declare that they have no conflicts of interest.

Additional information

Translated by P. Sigalevich

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pimenov, N.V., Nikolaev, Y.A., Dorofeev, A.G. et al. Introduction of Exogenous Activated Sludge as a Way to Enhance the Efficiency of Nitrogen Removal in the Anammox Process. Microbiology 91, 356–363 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • nitritation-anammox
  • bioaugmentation
  • community composition
  • wastewater treatment