Skip to main content
Log in

A New Glance on the Mechanism of Autotrophic CO2 Assimilation in Green Sulfur Bacteria

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The autotrophic system of CO2 fixation in Chlorobaculum limnaeum strain C consists of two topologically independent enzyme complexes: the reverse tricarboxylic acid cycle (complex I) with acetyl-CoA as the only product, and a noncyclic complex of reactions (complex II). In the reactions catalyzed by the complex II enzymes, acetyl-CoA synthesized in the reverse TCA cycle is used to synthesize all the substrates required for biomass production. Complex I includes two carboxylation reactions catalyzed by 2-oxoglutarate synthase and isocitrate dehydrogenase. Complex II includes two additional carboxylation reactions, which are catalyzed by pyruvate synthase and PEP carboxylase. The enzyme complexes I and II are united into a system of autotrophic CO2 assimilation by citrate synthase, which is not present in the classical variant of the Arnon‒Buchanan cycle. The citrate synthase gene was detected in all studied green sulfur bacteria and may be considered a housekeeping gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alexander, B., Andersen, J.H., Cox, R.P., and Imhoff, J.F., Phylogeny of green sulfur bacteria on the basis of gene sequences of 16S rRNA and of the Fenna‒Matthews‒Olson protein, Arch. Microbiol., 2002, vol. 178, pp. 131‒140. https://doi.org/10.1007/s00203-002-0432-4

    Article  CAS  PubMed  Google Scholar 

  2. Evans, M.C., Buchanan, B.B., and Arnon, D.I., A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium, Proc. Natl. Acad. Sci. USA, 1966, vol. 55, pp. 928‒934. https://doi.org/10.1073/pnas.55.4.928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucl. Acids Symp. Ser., 1999, vol. 41, pp. 95‒98.

    CAS  Google Scholar 

  4. Hügler, M. and Sievert, S.M., Beyond the Calvin cycle: autotrophic carbon fixation in the ocean, Annu. Rev. Mar. Sci., 2011, vol. 3, pp. 261‒289. https://doi.org/10.1146/annurev-marine-120709-142712

    Article  Google Scholar 

  5. Imhoff, J.F., Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna‒Matthews‒Olson protein) gene sequences, Int. J. Syst. Evol. M-icrobiol., 2003, vol. 53, pp. 941‒951. https://doi.org/10.1099/ijs.0.02403-0

    Article  CAS  Google Scholar 

  6. Ivanovsky, R.N., Krasilnikova, E.N., and Fal, Y.I., A pathway of the autotrophic CO2 fixation in Chloroflexus aurantiacus, Arch. Microbiol., 1993, vol. 159, pp. 257‒264. https://doi.org/10.1007/BF00248481

    Article  CAS  Google Scholar 

  7. Ivanovsky, R.N., Sintsov, N.V., and Kondratieva, E.N., ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum, Arch. M-icrobiol., 1980, vol. 128, pp. 239‒241. https://doi.org/10.1007/BF00406165

    Article  Google Scholar 

  8. Keppen, O.I., Tourova, T.P., Ivanovsky, R.N., Lebedeva, N.V., Baslerov, R.V., and Berg, I.A., Phylogenetic position of three strains of green sulfur bacteria, Microbiology (Moscow), 2008, vol. 77, pp. 243‒246. https://doi.org/10.1134/S0026261708020203

    Article  CAS  Google Scholar 

  9. Larsen, H., On the culture and general physiology of the green sulfur bacteria, J. Bacteriol., 1952, vol. 64, pp. 187‒196. https://doi.org/10.1128/jb.64.2.187-196.1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Proudfoot, A.T., Bradberry, S.M., and Vale, J.A., Sodium fluoroacetate poisoning, Toxicol. Rev., 2006, vol. 25, pp. 213‒219. https://doi.org/10.2165/00139709-200625040-00002

    Article  CAS  PubMed  Google Scholar 

  11. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. B-iol. Evol., 1987, vol. 4, pp. 406‒425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  Google Scholar 

  12. Sirevag, R. and Ormerod, J.G., Carbon dioxide-fixation in photosynthetic green sulfur bacteria, Science, 1970, vol. 169, pp. 186‒188. https://doi.org/10.1126/science.169.3941.186

    Article  CAS  PubMed  Google Scholar 

  13. Sweetlove, L.J., and Fernie, A.R., The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation, Nat. Commun., 2018, vol. 9, p. 2136. https://doi.org/10.1038/s41467-018-04543-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nuc-l. Acids Res., 1994, vol. 22, pp. 4673‒4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  Google Scholar 

  15. Trueper, H.G. and Schlegel, H.G., Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii, Antonie van Leeuwenhoek, 1964, vol. 30, pp. 225‒238. https://doi.org/10.1007/bf02046728

    Article  CAS  PubMed  Google Scholar 

  16. Turova, T.P., Kovaleva, O.L., Gorlenko, V.M., and Ivanovskii, R.N., Use of genes of carbon metabolism enzymes as molecular markers of Chlorobi phylum representatives, Microbiology (Moscow), 2013, vol. 83, pp. 784‒793. https://doi.org/10.1134/S0026261714010159

    Article  CAS  Google Scholar 

  17. Van de Peer, Y. and De Wachter, R., TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment, Comput. Appl. Biosci., 1994, vol. 10, pp. 569‒570. https://doi.org/10.1093/bioinformatics/10.5.569

    Article  CAS  PubMed  Google Scholar 

  18. Villafranca, J.J. and Platus, E., Fluorocitrate inhibition of aconitase. Reversibility of the inactivation, Biochem. Biophys. Res. Commun., 1973, vol. 55, pp. 1197‒1207. https://doi.org/10.1016/s0006-291x(73)80021-x

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Lebedinskii for fruitful discussions during the preparation of the manuscript.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-54-12031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Ivanovsky.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanovsky, R.N., Lebedeva, N.V. & Tourova, T.P. A New Glance on the Mechanism of Autotrophic CO2 Assimilation in Green Sulfur Bacteria. Microbiology 91, 225–234 (2022). https://doi.org/10.1134/S0026261722300026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722300026

Keywords:

Navigation