Skip to main content

Effect of Pristine Multi-Walled Carbon Nanotubes on Formation and Degradation of Bacterial Biofilms


The effect of pristine multi-walled carbon nanotubes (MWCNT) on the biofilms of gram-negative bacteria, typical members of the activated sludge community, and gram-positive rhodococci involved in xenobiotic biodegradation, was investigated. Nanomaterials of this type not only did not inhibit biofilm formation completely, but were shown to have a probiofilm effect on the studied bacteria. In the presence of MWCNT in dynamic equilibrium with suspension cultures, less massive biofilms of Burkholderia dolosa BOS, Rhodococcus erythropolis 4-1, and R. ruber gt1, but reliably more massive biofilms of Acinetobacter guillouiae 11h, Alcaligenes faecalis 2, and R. erythropolis 11-2 were formed. However, after preliminary cell adhesion and in the absence of suspension culture, all studied strains formed reliably more massive biofilms. More pronounced degradation in the presence of MWCNT was observed for the biofilms of motile gram-negative bacteria. The effect of carbon nanomaterials on the metabolic activity and viability of the studied strains was assessed by reduction of a tetrazolium salt and of the redox indicator resazurin, total ATP content, and cell membrane disturbance. The respiratory activity reliably increased in the biofilms of R. erythropolis 11-2 and R. ruber gt1 grown in the presence of MWCNT, as well as in mature biofilms of R. erythropolis IL BIO and R. erythropolis 11-2 grown in LB medium and then treated with MWCNT. MWCNT were shown to have no negative effect on reduction of metabolized stain XTT by the cells. Comprehensive investigation of biofilm formation and metabolic activity of bacterial cells confirmed the absence of cytotoxic effect of pristine MWCNT on the cells of gram-negative activated sludge bacteria and gram-positive rhodococci in biofilms.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. Aqel, A., El-Nour, K.M.M.A., Ammar, R.A.A., and Al-Warthan, A., Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation, Arabian J. Chem., 2012, vol. 5, pp. 1–23.

    CAS  Article  Google Scholar 

  2. Bogachev, M., Volkov, V., Markelov, O., Trizna, E., Baydamshina, D., Melnikov, V., Zelenikhin, P., Murtazina, R., Sharafutdinov, I., and Kayumov, A., Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images, PLoS One, 2018, vol. 13. e0193267.

    Article  Google Scholar 

  3. Das, R., Hamid, S.B.A., Ali, M.E., Ismail, A.F., Annuar, M.S.M., and Ramakrishna, S., Multifunctional carbon nanotubes in water treatment: the present, past and future, Desalination, 2014, vol. 354, pp. 160–179.

    CAS  Article  Google Scholar 

  4. Demakov, V.A., Vasil’ev, D.M., Pavlova, Y.A., Ovechkina, G.V., Maksimov, A.Y., and Maksimova, Y.G., Activated sludge bacteria transforming cyanopyridines and amides of pyridinecarboxylic acids, Microbiology (Moscow), 2015, vol. 84, pp. 433–441.

    CAS  Article  Google Scholar 

  5. Dong, X., McCoy, E., Zhang, M., and Yang, L., Inhibitory effects of nisin-coated multi-walled carbon nanotube sheet on biofilm formation from Bacillus anthracis spores, J. Environ. Sci., 2014, vol. 26, pp. 2526–2534.

    Article  Google Scholar 

  6. Gannesen, A.V., Lesouhaitier, O., Racine, P.-J., Barreau, M., Netrusov, A.I., Plakunov, V.K., and Feuilloley, M.G.J., Regulation of monospecies and mixed biofilms formation of skin Staphylococcus aureus and Cutibacterium acnes by human natriuretic peptides, Front. Microbiol., 2018, vol. 9, art. 2912.

    Article  Google Scholar 

  7. Ghasemi, M., Daud, W.R.W., Hassan, S.H.A., Ohc, S.-E., Ismail, M., Rahimnejad, M., and Jahim, J.M., Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review, J. Alloys Compd., 2013, vol. 580, pp. 245–255.

    CAS  Article  Google Scholar 

  8. Goodwin D.G., Jr., Xia, Z., Gordon, T.B., Gao, C., Bouwerb, E.J., and Fairbrother, D.H., Biofilm development on carbon nanotube/polymer nanocomposites, Environ. Sci.: Nano., 2016, vol. 3, pp. 545–558.

    CAS  Google Scholar 

  9. Goodwin D.G., Jr., Marsh, K.M., Sosa, I.B., Payne, J.B., Gorham, J.M., Bouwer, E.J., and Fairbrother, D.H., Interactions of microorganisms with polymer nanocomposite surfaces containing oxidized carbon nanotubes, Environ. Sci. Technol., 2015, vol. 49, pp. 5484–5492.

    CAS  Article  Google Scholar 

  10. Hirschfeld, J., Akinoglu, E.M., Wirtz, D.C., Hoerauf, A., Bekeredjian-Ding, I., Jepsen, S., Haddouti, E.-M., Limmer, A., and Giersig, M., Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis, Nanomedicine: Nanotechnology, Biology and Medicine, 2017, vol. 13, no. 4, pp. 1587–1593.

    CAS  Article  Google Scholar 

  11. Ihsanullah, Carbon nanotube membranes for water purification: developments, challenges, and prospects for the future, Separat. Purificat. Technol., 2019, vol. 209, pp. 307–337.

  12. Ivshina, I.B., Kuyukina, M.S., and Kostina, L.V., Adaptive mechanisms of nonspecific resistance to heavy metal ions in alkanotrophic actinobacteria, Russ. J. Ecol., 2013, vol. 44, pp. 123‒130.

    CAS  Article  Google Scholar 

  13. Jiang, Z., Zhang, D., Zhou, L., Deng, D., Duan, M., and Liu, Y., Enhanced catalytic capability of electroactive biofilm modified with different kinds of carbon nanotubes, Anal. Chim. Acta, 2018, vol. 1035, pp. 51–59.

    CAS  Article  Google Scholar 

  14. Kang, S., Herzberg, M., Rodrigues, D.F., and Elimelech, M., Antibacterial effects of carbon nanotubes: size does matter!, Langmuir, 2008, vol. 24, pp. 6409–6413.

    CAS  Article  Google Scholar 

  15. Kang, S., Pinault, M., Pfefferle, L.D., and Elimelech, M., Single-walled carbon nanotubes exhibit strong antimicrobial activity, Langmuir, 2007, vol. 23, pp. 8670–8673.

    CAS  Article  Google Scholar 

  16. Levi-Polyachenko, N., Young, C., MacNeill, C., Braden, A., Argenta, L., and Reid, S., Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes, Int. J. Hyperthermia, 2014, vol. 30, pp. 490–501.

    CAS  Article  Google Scholar 

  17. Madenli, E.C., Yanar, N., and Choi, H., Enhanced antibacterial properties and suppressed biofilm growth on multi-walled carbon nanotube (MWCNT) blended polyethersulfone (PES) membranes, J. Environ. Chem. Engin., 2020, vol. 9, art. 104755.

  18. Maksimova, Y.G., Demakov, V.A., Osovetskii, B.M., and Nikulin, S.M., Heterogeneous biocatalyst for nitrile and amide transformation based on cells of nitrile-hydrolyzing bacteria and multiwalled carbon nanotubes, Appl. Biochem. Microbiol., 2017, vol. 53, pp. 506–512.

    CAS  Article  Google Scholar 

  19. Maksimova, Yu.G., Sergeeva, A.A., Ovechkina, G.V., and Maksimov, A.Yu., Pyridine degradation by suspensions and biofilms of Achromobacter pulmonis PNOS and Burkholderia dolosa BOS strains isolated from activated sludge of sewage treatment plants, Biotechnology, 2020, vol. 36, no. 2, pp. 86–98.

    Google Scholar 

  20. Maksimov, A.Yu., Kuznetsova, M.V., Ovechkina, G.V., Kozlov, S.V., Maksimova, Yu.G., and Demakov, V.A., Effects of nitriles and amides on the growth and nitrile hydratase activity of the Rhodococcus sp. strain gt1, Appl. Biochem. Microbiol., 2003, vol. 39, pp. 55–59.

    CAS  Article  Google Scholar 

  21. Malek, I., Schaber, C.F., Heinlein, T., Schneider, J.J., Gorb, S.N., and Schmitz, R.A., Vertically aligned multi walled carbon nanotubes prevent biofilm formation of medically relevant bacteria, J. Mater. Chem. B., 2016, vol. 4, pp. 5228–5235.

    CAS  Article  Google Scholar 

  22. Nozhevnikova, A.N., Botchkova, E.A., and Plakunov, V.K., Multi-species biofilms in ecology, medicine, and biotechnology, Microbiology (Moscow), 2015, vol. 84, pp. 731–750.

    CAS  Article  Google Scholar 

  23. Özdemir, S., Oduncu, M.K., Kilinc, E., and Soylak, M., Tolerance and bioaccumulation of U(VI) by Bacillus mojavensis and its solid phase preconcentration by Bacillus mojavensis immobilized multiwalled carbon nanotube, J. Environ. Manage., 2017, vol. 187, pp. 490‒496.

    Article  Google Scholar 

  24. Plakunov, V.K., Mart’yanov, S.V., Teteneva, N.A., and Zhurina, M.V., A universal method for quantitative characterization of growth and metabolic activity of microbial biofilms in static models, Microbiology (Moscow), 2016, vol. 85, pp. 509–513.

    CAS  Article  Google Scholar 

  25. Plakunov, V.K., Mart’yanov, S.V., Teteneva, N.A., and Zhurina, M.V., Controlling of microbial biofilms formation: anti- and probiofilm agents, Microbiology (Moscow), 2017, vol. 86, pp. 423‒438.

    CAS  Article  Google Scholar 

  26. Qu, Y., Wang, J., Zhou, H., Ma, Q., Zhang, Z., Li, D., Shen, W., and Zhou, J., Concentration-dependent effects of carbon nanotubes on growth and biphenyl degradation of Dyella ginsengisoli LA-4, Environ. Sci. Pollut. Res., 2016, vol. 23, pp. 2864–2872.

    CAS  Article  Google Scholar 

  27. Sartori, D.R., Bertuola, M., Miñan, A., Gonik, E., Gonzalez, M.C., and de Melé, M.F.L., Environmentally induced changes of commercial carbon nanotubes in aqueous suspensions. Adaptive behavior of bacteria in biofilms, ACS Omega., 2021, vol. 6, pp. 5197−5208.

    Article  Google Scholar 

  28. Sun, Y. and Zhang, Z., New anti-biofouling carbon nanotubes-filled polydimethylsiloxane composites against colonization by pioneer eukaryotic microbes, Int. Biodeterior. Biodegrad., 2016, vol. 110, pp. 147–154.

    CAS  Article  Google Scholar 

  29. Tolmaciu, C.-M. and Morris, M.C., Carbon nanotube biosensors, Front. Chem., 2015, vol. 3, art. 59.

  30. Upadhyayula, V.K.K. and Gadhamshetty, V., Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review, Biotechnol. Adv., 2010, vol. 28, pp. 802–816.

    CAS  Article  Google Scholar 

  31. Yan, H., Pan, G., Zou, H., Li, X., and Chen, H., Effective removal of microcystins using carbon nanotubes embedded with bacteria, Chin. Sci. Bull., 2004, vol. 49, pp. 1694–1698.

    CAS  Article  Google Scholar 

  32. Zardini, H.Z., Amiri, A., Shanbedi, M., Maghrebi, M., and Baniadam, M., Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method, Colloids Surf. B., 2012, vol. 92, pp. 196–202.

    CAS  Article  Google Scholar 

  33. Zarubina, A.P., Lukashev, E.P., Deev, L.I., Parkhomen-ko, I.M., and Rubin, A.B., Biotesting the biological effects of single-wall carbon nanotubes using bioluminescent bacteria test-system, Nanotechnologies in Russia, 2009, vol. 4, nos. 11–12, pp. 871–875.

    Article  Google Scholar 

  34. Zhang, P., Liu, J., Qu, Y., Zhang, J., Zhong, Y., and Feng, Y., Enhanced performance of microbial fuel cell with a bacteria/multi-walled carbon nanotube hybrid biofilm, J. Power Sourc., 2017, vol. 361, pp. 318–325.

    CAS  Article  Google Scholar 

  35. Zhang, Y., Chen, X., Yuan, Y., Lu, X., Yang, Z., Wang, Y., and Sun, J., Long-term effect of carbon nanotubes on electrochemical properties and microbial community of electrochemically active biofilms in microbial fuel cells, Int. J. Hydrogen Energy, 2018, vol. 43, pp. 16240–16247.

    CAS  Article  Google Scholar 

  36. Zorina, A.S., Maksimova, Y.G., and Demakov, V.A., Biofilm formation by monocultures and mixed cultures of Alcaligenes faecalis 2 and Rhodococcus ruber gt 1, Microbiology (Moscow), 2019, vol. 88, pp. 164–171.

    CAS  Article  Google Scholar 

Download references


The reported study was funded by Russian Foundation for Basic Research and Perm Territory, project no. 20-44-596002.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yu. G. Maksimova.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

The authors declare that they have no conflicts of interest.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maksimova, Y.G., Bykova, Y.E., Zorina, A.S. et al. Effect of Pristine Multi-Walled Carbon Nanotubes on Formation and Degradation of Bacterial Biofilms. Microbiology 91, 454–462 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • bacterial biofilms
  • multi-walled carbon nanotubes
  • biofilm formation
  • respiratory activity
  • metabolic activity