Skip to main content
Log in

L-Lactate Oxidase Systems of Microorganisms

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Lactic acid (lactate) is among the most important natural α-hydroxy acids and is involved in a number of biological processes. Lactate is the terminal product of glucose metabolism in tissues under oxygen limitation, the major intercellular energy compound in human muscles and brain tissue, and a natural component of wines and other foodstuffs. Many microorganisms utilize L-lactate as a carbon and energy source, which provides for their survival and competitiveness with other species. Ability to utilize L-lactate is responsible for pathogenicity of some bacterial species, which is important in medical and pharmaceutical research. L-lactate-oxidizing enzymes are subdivided into soluble and insoluble ones. Soluble L-lactate oxidase systems include flavin-containing enzymes, which transfer electrons directly to oxygen (L-lactate oxidases and L-lactate monooxygenases). They are common among bacteria, yeasts, and fungi. Insoluble enzymes may contain both flavins and other components, including Fe-S clusters, which transfer electrons to the respiratory chain at the level of ubiquinone (coenzyme Q or menaquinone). In this case lactate oxidation is coupled to development of the transmembrane potential and ATP synthesis. These systems are present mostly in bacteria and algae. Investigation of the structure and organization of L-lactate utilization operons is an important aspect in investigation of L-lactate oxidase systems, since this approach may result in identification of new enzymes involved in lactate oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aguilera, L., Campos, E., Giménez, R., Badía, J., Aguilar, J., and Baldoma, L., Dual role of LldR in regulation of the lldPRD operon, involved in L-lactate metabolism in Escherichia coli, J. Bacteriol., 2008, vol. 190, pp. 2997‒3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amar, K.M. and Lawrence, T.D., Natural fibers, biopolymers, and biocomposites, CRC Press. 2005, рр. 528‒569.

  3. Arinbasarova, A., Machulin, A., Biryukova, E., Sorokin, V., Medentsev, A., and Suzina, N., Structural changes in the cell envelope of Yarrowia lipolytica yeast under stress conditions, Can. J. Microbiol., 2018, vol. 64, pp. 359‒365. https://doi.org/10.1139/cjm-2018-0034

    Article  CAS  PubMed  Google Scholar 

  4. Arinbasarova, A.Y., Biryukova, E.N., Suzina, N.E., and Medentsev, A.G., Synthesis and localization of L-lactate oxidase in yeasts Yarrowia lipolytica, Microbiology (Moscow), 2014, vol. 83, pp. 505‒509.

    Article  CAS  Google Scholar 

  5. Ashok, Y., Maksimainen, M.M., Kallio, T., Kilpeläi-nen, P., and Lehtiö, L., FMN-dependent oligomerization of putative lactate oxidase from Pediococcus acidilactici, PLoS One, 2020, vol. 15, art. e0223870. https://doi.org/10.1371/journal.pone.0223870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Atack, J.M., Ibranovic, I., Ong, C.-L.Y., Djoko, K.Y., Chen, N.H., Hoven, R., Jennings, M., Edwards, J.L., and McEwan, A.G., A role for lactate dehydrogenases in the survival of Neisseria gonorrhoeae in human polymorphonuclear leukocytes and cervical epithelial cells, J. Infect. Dis., 2014, vol. 210, pp. 1311‒1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berry, D. and Reinisch, W., Intestinal microbiota: a source of novel biomarkers in inflammatory bowel diseases?, Best Pract. Res. Clin. Gastroenterol., 2013, vol. 27, pp. 47‒58.

    Article  CAS  PubMed  Google Scholar 

  8. Biryukova, E.N., Arinbasarova, A.Y., and Medentsev, A.G., Synthesis of L-lactate oxidaze in yeast Yarrowia lipolytica during submerged cultivation, Appl. Biochem. Microbiol., 2017, vol. 53, pp. 217‒221.

    Article  CAS  Google Scholar 

  9. Biryukova, E.N., Arinbasarova, A.Y., Suzina, N.E., Medentsev, A.G., and Sorokin, V.V., Ultrastructural changes in Yarrowia lipolytica cells under stress conditions, Microbiology (Moscow), 2011, vol. 80, pp. 350‒354.

    Article  CAS  Google Scholar 

  10. Biryukova, E.N., Stupar, Y.O., Arinbasarova, A.Y., and Medentsev, A.G., Yarrowia lipolytica, a producer of L-lactate oxidase, Microbiology (Moscow), 2009, vol. 78, pp. 650‒652.

    Article  CAS  Google Scholar 

  11. Black, M.T., Gunn, F.J., Chapman, S.K., and Reid, G.A., Structural basis for the kinetic differences between flavocytochrome b 2 from the yeasts Hansenula anomala and Saccharomyces cerevisiae, Biochem. J., 1989, vol.  263, pp. 973‒976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Braymer, J.J., Freibert, S.A., Rakwalska-Bange, M., and Lill, R., Mechanistic concepts of iron-sulfur protein biogenesis in Biology, Biochim. Biophys. Acta. Mol. Cell Res., 2021, vol. 1868, p. 118863.

    CAS  Google Scholar 

  13. Bulut, S., Elibol, M., and Ozer, D., Effect of different carbon sources on L(+)-lactic acid production by Rhizopus oryzae, Biochem. Eng. J., 2004, vol. 21, pp. 33–37.

    Article  CAS  Google Scholar 

  14. Chai, Y., Kolter, R., and Losick, R., A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation, Bacteriol., 2009, vol. 191, pp. 2423‒2430.

    Article  CAS  Google Scholar 

  15. Chapman, S.K., Reid, G.A., Bell, C., Short, D., and Daff, S., Flavocytochrome b 2: an ideal model system for studying protein-mediated electron transfer, Biochem. Soc. Trans., 1996, vol. 24, pp. 73‒77.

    Article  CAS  PubMed  Google Scholar 

  16. Chapman, S.K., White, S.A., and Reid, G.A., Flavocytochrome b 2, Adv. Inorg. Chem., 1991, vol. 36, pp. 257‒301.

    Article  CAS  Google Scholar 

  17. Cunha-Silva, H., Pires, F., Dias-Cabral, A.C., and Arcos-Martinez, M.J., Inhibited enzymatic reaction of crosslinked lactate oxidase through a pH-dependent mech, Colloids and Surfaces B: Biointerfaces, 2019, vol. 184, art. 110490. https://doi.org/10.1016/j.colsurfb.2019.110490

    Article  CAS  PubMed  Google Scholar 

  18. Datta, R. and Henry, M.J.R., Lactic acid: recent advances in products, processes and technologies, Chem. Technol. Biotechnol., 2006, vol. 81, pp. 1119– 1129.

    Article  CAS  Google Scholar 

  19. Derunets, A.S., Biological basis for improvement of the cultivation of lactic acid bacteria for development of an efficient technology for lactic acid production, Cand. Sci. (Bi-ol.) Dissertation, Moscow, 2020.

  20. Duncan, J.D., Wallis, J.O., and Azari, M.R., Purification and properties of Aerococcus viridans lactate oxidase, Biochem. Biophys. Res. Commun., 1989, vol. 164, pp. 919‒926.

    Article  CAS  PubMed  Google Scholar 

  21. Exley, R.M., Shaw, J., Mowe, E., Sun, Y.-H., West, N.P., Williamson, M., Botto, M., Smith, H., and Tang, C.M., Available carbon source influences the resistance of Neisseria meningitidis against complement, J. Exp. Med., 2005, vol. 201, pp. 1637‒1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Exley, R.M., Wu, H., Shaw, J., Schneider, M.C., Smith, H., Jerse, A.E., and Tang, C.M., Lactate acquisition promotes successful colonization of the murine genital tract by Neisseria gonorrhoeae, Infect. Immun., 2007, vol. 75, pp. 1318‒1324.

    Article  CAS  PubMed  Google Scholar 

  23. Flieger, M., Kantorova, M., Prell, A., Rezanka, T., and Votruba, J., Biodegradable plastics from renewable sources, Folia Microbiol., 2003, vol. 48, pp. 27‒44.

    Article  CAS  Google Scholar 

  24. Fraaije, M.W., Van Berkel, W.J.H., Benen, J.A., Visser, J., and Mattevi, A., A novel oxidoreductase family sharing a conserved FAD-binding domain, Trends Biochem. Sci., 1998, vol. 23, pp. 206‒207.

    Article  CAS  PubMed  Google Scholar 

  25. Furuichi, M., Suzuki, N., Dhakshnamoorhty, B., Minagawa, H., Yamagishi, R., Watanabe, Y., Goto, Y., Kaneko, H., Yoshida, Y., Yagi, H., Waga, I., Kumar, P.K.R., and Mizuno, H., X-ray structures of Aerococcus viridans lactate oxidase and its complex with D-lactate at pH 4.5 show an alpha-hydroxyacid oxidation mechanism, J. Mol. Biol., 2008, vol. 378, pp. 436‒446.

    Article  CAS  PubMed  Google Scholar 

  26. Futai, M. and Kimura, H., Inducible membrane-bound L‑lactate dehydrogenase from Escherichia coli. Purification and properties, J. Biol. Chem., 1977, vol. 252, pp. 5820‒5827.

    Article  CAS  PubMed  Google Scholar 

  27. Gao, C., Hu, C., Zheng, Z., Ma, C., Jiang, T., Dou, P., Zhang, W., Che, B., Wang, Y., Lv, M., and Xu, P., Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa, J. Bacteriol., 2012, vol. 194, pp. 2687‒2692. https://doi.org/10.1128/JB.06579-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao, C., Qiu, J., Ma, C., and Xu, P., Efficient production of pyruvate from D,L-lactate by the lactate-utilizing strain Pseudomonas stutzeri SDM, PLoS One, 2012, vol. 7, art. e40755. https://doi.org/10.1371/journal.pone.0040755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao, C., Wang, Y., Zhang, Y., Lv, M., Dou, P., Xu, P., and Maa, C., NAD-independent L-lactate dehydrogenase required for L-lactate utilization in Pseudomonas stutzeri A1501, J. Bacteriol., 2015, vol. 197, pp. 2239‒2247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao, C., Zhang, W., Ma, C., Liu, P., and Xu, P., Kinetic resolution of 2-hydroxybutanoate racemic mixtures by NAD-independent L-lactate dehydrogenase, Bioresour. Technol., 2011, vol. 102, pp. 4595‒4599.

    Article  CAS  PubMed  Google Scholar 

  31. Garvie, E.I., Bacterial lactate dehydrogenases, Microbiol. Rev., 1980, vol. 44, pp. 106‒139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Georgi, T., Engels, V., and Wendisch, V.F., Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum, J. Bacteriol., 2008, vol. 190, pp. 963‒971. https://doi.org/10.1128/JB.01147-07

    Article  CAS  PubMed  Google Scholar 

  33. Gladden, L.B., Lactate metabolism: a new paradigm for the third millennium, J. Physiol., 2004, vol. 558, pp. 5‒30. https://doi.org/10.1113/jphysiol.2003.058701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goers, L., Ainsworth, C., Goey, C.H., Kontoravdi, C., Freemont, P.S., and Polizzi, K.M. Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production, Biotechnol. Bioeng., 2017, vol. 114, pp. 1290‒1300. Goffin, P., Lorquet, F., Kleerebezem, M., and Hols, P., Major role of NAD-dependent lactate dehydrogenases in aerobic lactate utilization in Lactobacillus plantarum during early stationary phase, J. Bacteriol., 2004, vol. 186, vol. 19, pp. 6661‒6666. Goldstein, E.J., Citron, D.M., Peraino, V.A., and Cross, S.A., Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections, J. Clin. Microbiol., 2003, vol. 41, pp. 2752‒2754.

    Article  Google Scholar 

  35. Golovatyuk, A.A., Lactic acid-based polymers, Proc. 12th Int. Stud. Conf. “Stud. Nauch. Forum,” 2020. scienceforum.ru/2020/article/2018021196

  36. Hiraka, K., Kojima, K., Tsugawa, W., Asano, R., Ikebukuro, K., and Sode, K., Rational engineering of Aerococcus viridans L-lactate oxidase for the mediator modification to achieve quasi-direct electron transfer type lactate sensor, Biosens. Bioelectron., 2019, vol. 151, pp. 111974. https://doi.org/10.1016/j.bios.2019.111974

    Article  CAS  PubMed  Google Scholar 

  37. Jasso-Chavez, R., Garcia-Cano, I., Marin-Hernandez, A., Mendoza-Cozat, D., Rendon, J.L., and Moreno-Sanchez, R., The bacterial-like lactate shuttle components from heterotrophic Euglena gracilis, Biochim. Biophys. Acta, 2005, vol. 1709, pp. 181‒190.

    Article  CAS  PubMed  Google Scholar 

  38. Jasso-Chávez, R., Torres-Márquez, E., and Moreno-Sanchez, R., The membrane-bound and lactate dehydrogenase activities in mitochondria from Euglena gracilis, Arch. Biochem. Biophys., 2001, vol. 390, pp. 295‒303. https://doi.org/10.1006/abbi.2001.2353

    Article  PubMed  CAS  Google Scholar 

  39. Jiang, T., Gao, C., Ma, C., and Xu, P., Microbial lactate utilization: enzymes, pathogenesis, and regulation, Trends Microbiol., 2014, vol. 22, pp. 589‒599.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang, T., Gao, C., Su, F., Zhang, W., Hu, C., Dou, P., Zheng, Z., Tao, F., Ma, C., and Xu, P., Genome sequence of Pseudomonas stutzeri SDM-LAC, a typical strain for studying the molecular mechanism of lactate utilization, J. Bacteriol., 2012, vol. 194, pp. 894‒895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kean, K.M. and Karplus, A.P., Structure and role for active site lid of lactate monooxygenase from Mycobacterium smegmatis, Protein Sci., 2019, vol. 28, pp. 135‒149. https://doi.org/10.1002/pro.3506

    Article  CAS  PubMed  Google Scholar 

  42. Koman, V.B., Santschi, C., and Martin, O.J.F., Multiscattering-enhanced optical biosensor: multiplexed, non-invasive and continuous measurements of cellular processes, Biomed. Opt. Express, 2015, vol. 6, pp. 2353‒2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kubera, B., Hubold, C., Otte, S., Lindenberg, A.S., Zeiss, I., Krause, R., Steinkamp, M., Klement, J., Entringer, S., Pellerin, L., and Peters, A., Rise in plasmalactate concentrations with psychosocialstress: a possible sign of cerebral energydemand, Obes. Facts, 2012, vol. 5, pp. 384‒392. https://doi.org/10.1159/000339958

    Article  PubMed  Google Scholar 

  44. Kupletskaya, M.B., Sukhacheva, M.V., Kurakov, A.V., and Netrusov, A.I., Search for lactate oxidase producer microorganisms, Appl. Biochem. Microbiol., 2007, vol. 43, pp. 178‒181.

    Article  CAS  Google Scholar 

  45. Labeyrie, F. and Baydras, A., Differences in quaternary structure and constitutive chains between two homologous forms of cytochrome b 2 (L-lactate: cytochrome c oxodoreductase), Eur. J. Biochem., 1972, vol. 25, pp. 33‒40.

    Article  CAS  PubMed  Google Scholar 

  46. Lederer, F., Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b 2 , Eur. Biophys. J., 2011, vol. 40, pp. 1283‒1299.

    Article  CAS  PubMed  Google Scholar 

  47. Leiros, I., Wang, E., Rasmussen, T., Oksanen, E., Repo, H., Petersen, S.B., Heikinheimoa, P., and Houghb, E., The 2.1 A structure of Aerococcus viridans L-lactate oxidase (LOX), Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun., 2006, vol. 62, pp. 1185‒1190. https://doi.org/10.1107/S1744309106044678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Linder, M.C. and Hazegh-Azam, M., Copper biochemistry and molecular biology, Am. J. Clin. Nutr., 1996, vol. 63, pp. 797‒811.

    Google Scholar 

  49. Lockridge, O., Massey, V., and Sullivan, P.A., Mechanism of action of the flavoenzyme lactate oxidase, J. Biol. Chem., 1972, vol. 247, pp. 6097‒8106.

    Article  Google Scholar 

  50. Maeda-Yorita, K., Aki, K., Sagai, H., Misaki, H., and Massey, V., L-Lactate oxidase and L-lactate monooxygenase: mechanistic variations on a common structural theme, Biochimie, 1995, vol. 77, pp. 631‒642.

    Article  CAS  PubMed  Google Scholar 

  51. Mizutani, F., Sasaki, K., and Shimura, Y., Sequential determination of L-lactate and lactate dehydrogenase with immobilized enzyme electrode, Anal. Chem., 1983, vol. 55, pp. 35‒38.

    Article  CAS  Google Scholar 

  52. Morimoto, Y., Yorita, K., Aki, K., Misaki, H., and Massey, V., L-lactate oxidase from Aerococcus viridans crystallized as an octamer. Preliminary X-ray studies, Biochimie, 1998, vol. 80, pp. 309‒312.

    Article  CAS  PubMed  Google Scholar 

  53. Okano, K., Tanaka, T., and Ogino, C., Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits, Appl. Microbiol. Biotechnol., 2010, vol. 85. pp. 413‒423.

    Article  CAS  PubMed  Google Scholar 

  54. Pajot, P. and Claisse, M., Utilization by yeast of D-lactate and L-lactate as sources of energy in the presence of antimycin, Eur. J. Biochem., 1974, vol. 49, pp. 275‒285.

    Article  CAS  PubMed  Google Scholar 

  55. Pallotta, M.L., Valenti, D., Iacovino, M., and Passarella, S., Two separate pathways for L-lactate oxidation by Saccharomyces cerevisiae mitochondria which differ in energy production and carrier involvement, Biochim. Biophys. Acta, 2004, vol. 1608, pp. 104‒113.

    Article  CAS  PubMed  Google Scholar 

  56. Rathee, K., Dhull, V., Dhull, R., and Singh, S., Biosensors based on electrochemical lactate detection: a comprehensive review, Biochem. Biophys. Reports, 2016, vol. 5, pp. 35‒54. https://doi.org/10.1016/j.bbrep.2015.11.010

    Article  Google Scholar 

  57. Reddy, G., Altaf, M., and Naveena, B.J., Amylolytic bacterial lactic acid fermentation. A review, Biotechnol. Adv., 2008, vol. 26, pp. 22‒34.

    Article  CAS  PubMed  Google Scholar 

  58. Sakharov, D.A., Shkurnikov, M.U., Vagin, M.Yu., Yashina, E.I., Karyakin, A.A., and Tonevitsky, A.G., Relationship between lactate concentrations in active muscle sweat and whole blood, Bull. Experim. Biol. Med., 2010, vol. 150, pp. 83‒85.

    Article  CAS  Google Scholar 

  59. Skory, C.D., Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae, Appl. Environ. Microbiol., 2000, vol. 66, pp. 2343‒2348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smith, H., Tang, C.M., and Exley, R.M., Effect of host lactate on gonococci and meningococci: new concepts on the role of metabolites in pathogenicity, Infect. Immun., 2007, vol. 75, pp. 4190‒4198. Smith, H., Yates, E.A., Cole, J.A., and Parsons, N.J., Lactate stimulation of gonococcal metabolism in media containing glucose: mechanism, impact on pathogenicity, and wider implications for other pathogens, Infect. Immun., 2001, vol. 69, pp. 6565‒6572. Smutok, O.V., Os’mak, G.S., Gaida, G.Z., and Gonchar, M.V., Screening of yeasts producing stable L-lactate cytochrome c oxidoreductase and study of the regulation of enzyme synthesis, Microbiology (Moscow), 2006, vol. 75, pp. 20‒24.

    Article  CAS  Google Scholar 

  61. Solmo, M.L., L-lactic dehydrogenase in aerobic yeast. Comparison of the properties of the bound enzyme and the soluble enzyme, Biochim. Biophys. Acta, 1962, vol. 65, pp. 333‒346.

    Article  Google Scholar 

  62. Spehar-Délèze, A.-M., Anastasova, S., and Vadgama, P., Monitoring of lactate in interstitial fluid, saliva and sweat by electrochemical biosensor: the uncertainties of biological interpretation, Chemosensors, 2021, vol. 9, art. 195, pp. 2‒17.

  63. Stansen, C., Delaunay, S., Eggeling, L., Goergen, J.L., and Wendisch, V.F., Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production, Appl. Environ. Microbiol., 2005, vol. 71, pp. 5920‒5928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stoisser, T., Brunsteiner, M., Wilson, D.K., and Nidetzky, B., Conformational flexibility related to enzyme activity: evidence for a dynamic active-site gatekeeper function of Tyr215 in Aerococcus viridans lactate oxidase, Sci. Rep., 2016, vol. 6, p. 27892. Sullivan, P.A., Soon, C.Y., Schreurs, W.J., Cutfield, J.F., and Shepherd, M.G., The structure of L-lactate oxidase from Mycobacterium smegmatis, Biochem. J., 1977, vol. 165, pp. 375‒383.

    Article  Google Scholar 

  65. Sztajer, H., Wang, W., Lünsdorf, H., Stocker, A., and Schmid, R.D., Purification and some properties of a novel microbial lactate oxidase, Appl. Microbiol. Biotechnol., 1996, vol. 45, pp. 600‒606.

    Article  CAS  PubMed  Google Scholar 

  66. Thomas, M.T., Shepherd, M., Poole, R.K., van Vliet, A.H., Kelly, D.J., and Pearson, B.M., Two respiratory enzyme systems in Campylobacter jejuni NCTC 11168 contribute to growth on L-lactate, Environ. Microbiol., 2011, vol. 13, pp. 48‒61.

    Article  CAS  PubMed  Google Scholar 

  67. Umena, Y., Yorita, K., Matsuoka, T., Abe, M., Kita, A., Fukui, K., Tsukihara, T., and Morimoto, Y., Crystallization and preliminary X-ray diffraction study of L- lactate oxidase (LOX), R181M mutant, from Aerococcus viridans, Acta Cryst., 2005, vol. 61, pp. 439‒441.

    Article  CAS  Google Scholar 

  68. Vita, N., Valette, O., Brasseur, G., Lignon, S., Denis, Y., Ansaldi, M., Dolla, A., and Pieulle, L., The primary pathway for lactate oxidation in Desulfovibrio vulgaris, Front. Microbiol., 2015, vol. 6, art. 606. https://doi.org/10.3389/fmicb.2015.00606

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., and Geng, W., Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry, Front. Bioeng. Biotechnol., 2021, vol. 9, p. 612285. Xia, Z.X. and Mathews, F.S., Molecular structure offlavocytochrome b 2 at 2.4 Å resolution, J. Mol. Biol., 1990, vol. 212, pp. 837‒863.

    Article  Google Scholar 

  70. Yu, R.-Chui and Hang, D., Purification and characterization of NAD-dependent lactate dehydrogenase from Rhizopus oryzae, Food Chem., 1991, vol. 41, pp. 219‒225.

    Article  CAS  Google Scholar 

  71. Zhang, Z.Y., Jin, B., and Kelly, J.M., Production of lactic acid from renewable materials by Rhizopus fungi, Biochem. Eng. J., 2007, vol. 35, pp. 251‒263.

    Article  CAS  Google Scholar 

  72. Zhou, Y., Domínguez, J.M., Cao, N., Du, J., and Tsao, G.T., Optimization of L-lactic acid production from glucose by Rhizopus oryzae ATCC 52311, Appl. Biochem. Biotechnol., 1999, vols. 77‒79, pp. 401‒407.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Biryukova.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors. The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biryukova, E.N., Arinbasarova, A.Y. & Medentsev, A.G. L-Lactate Oxidase Systems of Microorganisms. Microbiology 91, 124–132 (2022). https://doi.org/10.1134/S0026261722020035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722020035

Keywords:

Navigation