Skip to main content
Log in

Benzoate-Degrading Bacteria of the Family Halomonadaceae Isolated from a Salt Mining Area: Species Diversity and Analysis of the benA Genes

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Screening of ability to utilize benzoate as the sole carbon and energy source was carried out for 124 strains of the family Halomonadaceae (genera Halomonas, Chromohalobacter, Salinicola, and Kushneria) isolated from mining sites of the Upper Kama deposit of potassium and magnesium salts. Active growth on benzoate (in the presence of 30‒70 g/L NaCl) was shown for 28 Halomonas strains closely related to the species H. taeanensis, H. olivaria, H. ventosae, H. titanicae, H. alkaliantarctica, H. neptunia, H. radicis, and H. sulfidaeris. Strains of the genera Chromohalobacter, Salinicola, and Kushneria either did not grow on benzoate or carried out its transformation (two Chromohalobacter strains). PCR screening for the benA gene encoding the α-subunit of benzoate 1,2-dioxygenase (1,2-DO), the key enzyme for benzoate degradation, within the family Halomonadaceae revealed its presence in all benzoate-degrading Halomonas strains. The sequences of the amplified fragments had the highest similarity (not exceeding 95.50%) with the genes encoding the α-subunits of benzoate 1,2-DO, 2-chlorobenzoate 1,2-DO, and other dioxygenases of Halomonas strains containing Rieske-type [2Fe-2S] clusters. New data on the genetic systems regulating benzoate degradation in Halomonas isolates are of interest for better understanding of molecular mechanisms of aromatics degradation under salinization conditions. The isolated active benzoate degraders may be used to develop the technologies for bioremediation and monitoring of polluted soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abdel-Mageed, W.M., Lehri, B., Jarmusch, S.A., Miranda, K., Al-Wahaibi, L.H., Stewart, H.A., Jamie-son, A.J., Jaspars, M., and Karlyshev, A.V., Whole genome sequencing of four bacterial strains from South Shetland Trench revealing biosynthetic and environmental adaptation gene clusters, Mar. Genomics, 2020, vol. 54, p. 100782.

    Article  Google Scholar 

  2. Anan’ina, L.N., Altyntzeva, O.V., and Plotnikova, E.G., The study of microbial community isolated from the region of salt mining, Bull. Perm Univ. (Biol.), 2005, no. 6, pp. 109–114.

    Google Scholar 

  3. Bachurin, B.A. and Odintsova, T.A., Wastes from mining and processing industry as sources of emission of organic pollutants, Mining Inform. Analyt. Bull., 2009, no. 7, pp. 374–380.

  4. Baggi, G., Bernasconi, S., Zangrossi, M., Cavalca, L., and Vincenza, A., Co-metabolism of di- and trichlorobenzoates in a 2-chlorobenzoate-degrading bacterial culture: effect of the position and number of halo-substituents, Int. Biodeter. Biodegr., 2008, vol. 62, pp. 57–64.

    Article  CAS  Google Scholar 

  5. Csonka, L.N., O’Connor, K., Larimer, F., Richardson, P., Lapidus, A., Ewing, A.D., Goodner, B.W., and Oren, A., What we can deduce about metabolism in the moderate halophile Chromohalobacter salexigens from its genomic sequence, in Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya, Gunde-Cimerman, N., Oren, A., and Plemenitas, A., Eds., Springer: Dordrecht, 2005, pp. 267–285.

    Google Scholar 

  6. de la Haba, R.R., Arahal, D.R., Sánchez-Porro, C., and Ventosa, A., The Family Halomonadaceae, in The Prokaryotes, Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F., Eds., Heidelberg: Springer, 2014, pp. 325–360.

    Google Scholar 

  7. Fathepure, B.Z., Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments, Front. Microbiol., 2014, vol. 5, art. 173.

    Article  Google Scholar 

  8. García, M.T., Ventosa, A., and Mellado, E., Catabolic versatility of aromatic compound-degrading halophilic bacteria, FEMS Microbiol. Ecol., 2005, vol. 54, pp. 97–109.

    Article  Google Scholar 

  9. Kim, D., Kim, S.W., Choi, K.Y., Lee, J.S., and Kim, E., Molecular cloning and functional characterization of the genes encoding benzoate and p-hydroxybenzoate degradation by the halophilic Chromohalobacter sp. strain HS-2, FEMS Microbiol. Lett., 2008, vol. 280, pp. 235–241.

    Article  CAS  Google Scholar 

  10. Korsakova, E.S., Anan’ina, L.N., Nazarov, A.V., Bachurin, B.A., and Plotnikova, E.G., Diversity of bacteria of the family Halomonadaceae at the mining area of the Verkhnekamsk salt deposit, Microbiology (Moscow), 2013, vol. 82, pp. 249‒252.

    Article  CAS  Google Scholar 

  11. Lane, D.J., 16S/23S rRNA sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., New York: John Wiley and Sons, 1991, pp. 115–175.

    Google Scholar 

  12. Le Borgne, S., Paniagua, D., and Vazquez-Duhalt, R., Biodegradation of organic pollutants by halophilic bacteria and archaea, J. Mol. Microbiol. Biotechnol., 2008, vol. 15, pp. 74–92.

    Article  CAS  Google Scholar 

  13. Lee, J.C., Jeon, C.O., Lim, J.M., Lee, S.M., Lee, J.M., Song, S.M., Park, D.J., Li, W.J., and Kim, C.J., Halomonas taeanensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 2027–2032.

    Article  CAS  Google Scholar 

  14. Li, M., Yi, P., Liu, Q., Pan, Y., and Qian, G., Biodegradation of benzoate by protoplast fusant via intergeneric protoplast fusion between Pseudomonas putida and Bacillus subtilis, Int. Biodeter. Biodegr., 2013, vol. 85, pp. 577–582.

    Article  CAS  Google Scholar 

  15. Monzón, G.C., Nisenbaum, M., Seitz, M.K.H., and Murialdo, S.E., New findings on aromatic compounds’ degradation and their metabolic pathways, the biosurfactant production and motility of the halophilic bacterium Halomonas sp. KHS3, Curr. Microbiol., 2018, vol. 75, pp. 1108–1118.

    Article  Google Scholar 

  16. Moreno, M., Sánchez-Porro, C., Piubeli, F., Frias, L., García, M.T., and Mellado, E., Cloning, characterization and analysis of cat and ben genes from the phenol degrading halophilic bacterium Halomonas organivorans, PLoS One, 2011, vol. 6, art. e21049.

    Article  CAS  Google Scholar 

  17. Navarro-Torre, S., Carro, L., Rodriguez-Llorente, I.D., Pajuelo, E., Caviedes, M.A., Igual, J.M., Klenk, H.P., and Montero-Calasanz, M.D.C., Halomonas radicis sp. nov., isolated from Arthrocnemum macrostachyum growing in the Odiel marshes (Spain) and emended descriptions of Halomonas xinjiangensis and Halomonas zincidurans, Int. J. Syst. Evol. Microbiol., 2020, vol. 70, pp. 220–227.

    Article  CAS  Google Scholar 

  18. Nelson, W.C., Maezato, Y., Wu, Yu-W., Romine, M.F., and Lindemann, S.R., Identification and resolution of microdiversity through metagenomic sequencing of parallel consortia, Appl. Environ. Microbiol., 2015, vol. 82, pp. 255–267.

    Article  Google Scholar 

  19. O’Dell, K.B., Woo, H.L., Utturkar, S., Klingeman, D., Brown, S.D., and Hazen, T.C., Genome sequence of Halomonas sp. strain KO116, an ionic liquid-tolerant marine bacterium isolated from a lignin-enriched seawater microcosm, Genome Announc., 2015, vol. 3, art. e00402-15.

    Article  Google Scholar 

  20. Oie, C.S., Albaugh, C.E., and Peyton, B.M., Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism, Water Res., 2007, vol. 41, pp. 1235–1242.

    Article  CAS  Google Scholar 

  21. Olsson, B.E., Korsakova, E.S., Anan’ina, L.N., Pyankova, A.A., Mavrodi, O.V., Plotnikova, E.G., and Mavrodi, D.V., Draft genome sequences of strains Salinicola socius SMB35T, Salinicola sp. MH3R3-1 and Chromohalobacter sp. SMB17 from the Verkhnekamsk potash mining region of Russia, Stand. Genomic Sc., 2017, vol. 12, art. 39.

  22. Parales, R.E. and Resnick, S.M., Aromatic ring hydroxylating dioxygenases, in Pseudomonas, Ramos, J.L. and Levesque, R.C., Eds., Boston: Springer, 2006, pp. 287–340.

    Google Scholar 

  23. Poli, A., Esposito, E., Orlando, P., Lama, L., Giordano, A., de Appolonia, F., Nicolaus, B., and Gambacorta, A., Halomonas alkaliantarctica sp. nov., isolated from saline Lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium, Syst. Appl. Microbiol., 2007, vol. 30, pp. 31–38.

    Article  CAS  Google Scholar 

  24. Pyankova, A.A., Usanina, D.I., Aleev, V.S., Blinov, S.M., and Plotnikova, E.G., Characteristics of bacteria isolated from the miner of the Verkhnekamsky salt deposit (Perm krai), Bull. Perm Univ. (Biol.), 2020, pp. 312–320.

    Google Scholar 

  25. Raymond, R.L., Microbial oxidation of n-paraffinic hydrocarbons, Develop. Ind. Microbiol., 1961, vol. 2, pp. 23–32.

    CAS  Google Scholar 

  26. Rosenberg, A., Pseudomonas halodurans sp. nov., a halotolerant bacterium, Arch. Microbiol., 1983, vol. 136, pp. 117–123.

    Article  Google Scholar 

  27. Sanchez-Porro, C., Kaur, B., Mann, H., and Ventosa, A., Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2768–2774.

    Article  CAS  Google Scholar 

  28. Short Protocols in Molecular Biology, Ausbel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., Eds., New York: John Wiley & Sons, 1995, 3rd ed.

    Google Scholar 

  29. Yastrebova, O.V., Pyankova, A.A., and Plotnikova, E.G., Phthalate-degrading bacteria isolated from an industrial mining area and the processing of potassium and magnesium salts, Appl. Biochem. Microbiol. (Moscow), 2019, vol. 55, pp. 397‒404.

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed according to State Assignment project no. АААА-А19-119112290008-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Plotnikova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyankova, A.A., Plotnikova, E.G. Benzoate-Degrading Bacteria of the Family Halomonadaceae Isolated from a Salt Mining Area: Species Diversity and Analysis of the benA Genes. Microbiology 91, 91–103 (2022). https://doi.org/10.1134/S0026261722010106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722010106

Keywords:

Navigation