Skip to main content
Log in

Characterization of Franz Josef Land Soil Mycobiota by Microbiological Plating and Real-time PCR

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The mycobiota of the following soils of the Franz Josef Land archipelago was characterized using the classical plating techniques and real-time PCR methods: Cryosols (Arenic), Cryosols (Loamic), Oxyaquic Cryosols (Loamic), Leptosols (Loamic), and Cryosols (Loamic, Humic). The total abundance of microscopic fungi varied from 3.10 × 101 CFU/g soil in deep mineral horizons to 6.56 × 103 CFU/g soil in the upper organogenic soil horizons. A total of 47 micromycete species were isolated, which belonged to 32 genera from three divisions. Psychrotolerant strains growing at both 5 and 25°C were predominant. The genera Penicillium (five species), Cadophora (four species), Cladosporium, Phoma, and Thelebolus (three species each) exhibited the highest species diversity. The most numerous genera: Penicillium, Hyphozyma, Phoma, Antarctomyces, and Pseudogymnoascus, were saprotrophic and common in cold ecosystems. Pseudogymnoascus pannorum, Hyphozyma variabilis var. variabilis, Penicillium aurantiogriseum, Thelebolus microsporus, and Goffeauzyma gilvescens were the species most often revealed by plating (over 40% occurrence). A significant part (30%) of identified species were those included in the BSL database of species pathogenic for humans and animals. The number of copies of fungal rRNA gene ITSs varied from 1.00 × 109 to 4.40 × 1010 copies/g soil in the mineral and organogenic layers, respectively. Spatial heterogeneity of mycobiota in the soils of the Franz Josef Land archipelago was revealed within the upper 5-cm layer, while deeper horizons were characterized by a uniform structure of micromycete communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abirami, B., Manigundan, K., Radhakrishnan, M., Gopikrishnan, V., Bhaskar, P.V., Shanmugasundaram, T., and Dastager, S.G., Diversity and bioprospecting potentials of antarctic (polar) microbes, in Microbiome-Host Interactions, Dhanasekaran, D., Dhiraj Paul, Amaresan, N., Sankaranarayanan, A., and Shouche, Y.S., Eds., Boca Raton: CRC Press, 2021, pp. 349‒365.

  2. Aleksandrova, V.D., Open plant groups of the polar desert of Alexandra Land (Franz Josef Land) and their classification, Botan. Zh., 1981, vol. 66, no. 5, pp. 26–36.

    Google Scholar 

  3. Aleksandrova, V.D., Rastitel’nost’ polyarnykh pustyn’ SSSR (Vegetation of Polar Deserts of the USSR), Leningrad: Nauka, 1983.

  4. Arup, U., PCR techniques and automated sequencing in lichens, in Protocols in Lichenology: Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring, Kranner, I., Beckett, R.P., and Varma, A.K., Eds., N.Y.: Springer-Verlag, 2002, pp. 392–411. https://doi.org/10.1007/978-3-642-56359-1_24

    Book  Google Scholar 

  5. Bergero, R., Girlanda, M., Varese, G.C., Intili, D., and Luppi, A.M., Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land, Polar Biol., 1999, vol. 21, pp. 361–368. https://doi.org/10.1007/s003000050374

    Article  Google Scholar 

  6. Blaud, A., Phoenix, G.K., and Osborn, A.M., Variation in bacterial, archaeal and fungal community structure and abundance in High Arctic tundra soil, Polar Biol., 2015, vol. 38, pp. 1009–1024. https://doi.org/10.1007/s00300-015-1661-8

    Article  Google Scholar 

  7. Bubnova, E.N. and Konovalova, O.P., Fungi in bottom sediments of the Chukchi Sea, Russian J. Mar. Biol., 2019, vol. 45, pp. 86–95. https://doi.org/10.1134/S1063074019020020

    Article  Google Scholar 

  8. Bubnova, E.N. and Nikitin, D.A., Fungi in bottom soils of the Barents and Kara seas distant from the coast, Russian J. Mar. Biol., 2017, vol. 45, pp. 400–406.

    Article  Google Scholar 

  9. Buzzini, P., Turk, M., Perini, L., Turchetti, B., and Gunde-Cimerman, N., Yeasts in polar and subpolar habitats, in Yeasts in Natural Ecosystems: Diversity, Buzzini, P., Lachance, M.A., and Yurkov, A., Eds., Cham: Springer, 2017, pp. 331–365. https://doi.org/10.1007/978-3-319-62683-3_11

    Book  Google Scholar 

  10. Castle, S.C., Lekberg, Y., Affleck, D., and Cleveland, C.C., Soil abiotic and biotic controls on plant performance during primary succession in a glacial landscape, J. Ecol., 2016, vol. 104, pp. 1555–1565. https://doi.org/10.1111/1365-2745.12615

    Article  Google Scholar 

  11. Connell, L.B., Rodriguez, R.R., Redman, R.S., and Dalluge, J.J., Cold-adapted yeasts in Antarctic deserts, in Cold-Adapted Yeasts. Biodiversity, Adaptation Strategies and Biotechnological Significance, Buzzini, P. and Margesin, R., Eds., Berlin, Heidelberg: Springer, 2014, pp. 75–98. https://doi.org/10.1007/978-3-642-39681-6_4

  12. de Hoog, G.S., Guarro, J., Gené, J., and Figueras, M.J., Atlas of Clinical Fungi, Centraalbureau voor Schimmelcultures (CBS), 2000, 2nd ed.

  13. de Wit, R. and Bouvier, T., ‘Everything is everywhere but the environment selects’; what did Baas Becking and Beijerinck really say?, Environ. Microbiol., 2006, vol. 8, pp. 755–758. https://doi.org/10.1111/j.1462-2920.2006.01017.x

    Article  PubMed  Google Scholar 

  14. Dobrovol’skaya, T.G., Zvyagintsev, D.G., Chernov, I.Y., Golovchenko, A.V., Zenova, G.M., Lysak, L.V., Manucharova, N.A., Marfenina, O.E., Polyanskaya, L.M., Stepanov, A.L., and Umarov, M.M., The role of microorganisms in the ecological functions of soils, Euras. Soil Sci., 2015, vol. 48, pp. 959–967. https://doi.org/10.1134/S1064229315090033

    Article  Google Scholar 

  15. Domsch, K.H., Gams, W., and Anderson, T.H., Compendium of Soil Fungi, Gams, W., Ed., Eching: IHW-Verlag, 2007, 2nd Taxonom. Rev. Edn.

  16. Dzhenyuk, S.L., Climate-forming factors and climate characteristics of the Franz Josef Land archipelago, Tr. Kola Nauchn. Tsentr. Russ. Akad. Nauk, 2014, no. 4(23), pp. 61–69.

  17. Ezhov, O.N., Ershov, R.V., and Zmitrovich, I.V., On findings of basidiomycetes under conditions of polar desert (Franz Josef Land), Bull. Mosk. O-va Ispytatelei Prirody, Otd. Biol., 2012, vol. 117, pp. 81–83.

    Google Scholar 

  18. Ezhov, O.N., Gavrilo, M.V., and Zmitrovich, I.V., Fungi of the Franz Josef Land archipelago, Tr. Kola Nauchn. Tsentr. Russ. Akad. Nauk, 2014, no. 4(23), pp. 288–299.

  19. Ezhov, O.N., Zmitrovich, I.V., and Ershov, R.V., Novel data on micromycetes of the Franz Josef Land archipelago, Bull. Mosk. O-va Ispytatelei Prirody, Otd. Biol., 2016, vol. 121, pp. 65–71.

    Google Scholar 

  20. Flocco, C.G., Mac Cormack, W.P., and Smalla, K., Antarctic soil microbial communities in a changing environment: their contributions to the sustainability of Antarctic ecosystems and the bioremediation of anthropogenic pollution, in The Ecological Role of Microorganisms in the Antarctic Environment, Castro-Sowinski, S., Ed., Cham: Springer, 2019, pp. 133–161. https://doi.org/10.1007/978-3-030-02786-5_7

    Book  Google Scholar 

  21. Glushakova, A.M., Kachalkin, A.V., and Chernov, I.Yu., Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil, Euras. Soil Sci., 2011, vol. 44, pp. 886–892. https://doi.org/10.1134/S1064229311080059

    Article  Google Scholar 

  22. Goryachkin, S.V., Dolgikh, A.V., and Mergelov, N.S., Soils of the islands of Franz Josef Land: geography, morphogenetic features, classification and role in the carbon cycle, Complex Scientific and Educational Expedition “Arctic Floating University-2017,” Polikin, D.Yu., Ed., Arkhangelsk: KIRA, 2017, pp. 15–36. [Electronic resource]: materials of the expedition.

  23. Hassan, N., Rafiq, M., Hayat, M., Shah, A.A., and Hasan, F., Psychrophilic and psychrotrophic fungi: a comprehensive review, Rev. Environ. Sci. Biotechnol., 2016, vol. 15, pp. 147–172. https://doi.org/10.1007/s11157-016-9395-9

    Article  Google Scholar 

  24. He, L., Mazza Rodrigues, J.L., Soudzilovskaia, N.A., Barceló, M., Olsson, P.A., Song, Ch., Tedersoo, L., Yuan Fenghui, Yuan Fengming, Lipson, D.A., and Xu, X., Global biogeography of fungal and bacterial biomass carbon in topsoil, Soil Biol. Biochem., 2020, vol. 151, art. 108024. https://doi.org/10.1016/j.soilbio.2020.108024

    Article  CAS  Google Scholar 

  25. Iliushin, V.A., First find of Cadophora Antarctica Rodr.-Andrade, Stchigel, Mac Cormack & Cano in the Arctic, Czech Polar Rep., 2020, vol. 10, pp. 147–152. https://doi.org/10.5817/CPR2020-2-11

    Article  Google Scholar 

  26. Khusnullina, A.I., Bilanenko, E.N., and Kurakov, A.V., Microscopic fungi of White Sea sediments, Contemp. Probl. Ecol., 2018, vol. 11, pp. 503–513. https://doi.org/10.1134/S1995425518050062

    Article  Google Scholar 

  27. Kirtsideli, I.Yu., Microscopic fungi in soils of Heiss Island (Franz Josef Land), Novosti Sistem. Nizsh. Rast., 2015, vol. 49, pp. 151–160.

    Article  Google Scholar 

  28. Kirtsideli, I.Yu., Microscopic fungi in soils and grounds of Arctic mountain systems, Biosfera, 2016, vol. 8, pp. 63–78.

    Article  Google Scholar 

  29. Kirtsideli, I.Y., Vlasov, D.Y., Abakumov, E.V., Barantsevich, E.P., Novozhilov, Y.K., Krylenkov, V.A., and Sokolov, V.T. Airborne fungi in arctic settlement Tiksi (Russian Arctic, coast of the Laptev Sea), Czech Polar Rep., 2017, vol. 7, pp. 300–310. https://doi.org/10.5817/CPR2017-2-29

    Article  Google Scholar 

  30. Kirtsideli, I.Yu., Vlasov, D.Yu., Zelenskaya, M.S., Barantsevich, E.P., Novozhilov, Yu.K., Krylenkov, V.A., Churkina, I.V., and Sokolov, V.T., Anthropogenic modification of mycobiota on the Vize island in the Kara Sea, Gigiyena Sanitariya, 2018, vol. 97, pp. 1058–1063.

    Article  Google Scholar 

  31. Kirtsideli, I.Yu., Vlasov, D.Yu., Zelenskaya, M.S., Ilyushin, V.A., Novozhilov, Yu.K., Churkina, I.V., and Barantsevich, Ye.P., Assessment of anthropogenic invasion of microscopic fungi in arctic ecosystems (Svalbard archipelago), Gigiyena Sanitariya, 2020, vol. 99, pp. 145–151.

    Article  CAS  Google Scholar 

  32. Kochkina, G.A., Ivanushkina, N.E., Lupachev, A.V., Starodumova, I.P., Vasilenko, O.V., and Ozerskaya, S.M., Diversity of mycelial fungi in natural and human-affected Antarctic soils, Polar Biol., 2019, vol. 42, pp. 47–64. https://doi.org/10.1007/s00300-018-2398-y

    Article  Google Scholar 

  33. Korneykova, M.V. and Nikitin, D.A., Qualitative and quantitative characteristics of the soil microbiome in the impact zone of the Kandalaksha aluminum smelter, Euras. Soil Sci., 2021, vol. 54, pp. 897–906. https://doi.org/10.1134/S1064229321060089

    Article  CAS  Google Scholar 

  34. Litvinov, M.A., Metody izucheniya pochvennykh mikroskopicheskikh gribov (Methods of Studying Soil Microscopic Fungi), Leningrad: Nauka, 1969.

  35. Lysak, L.V., Maksimova, I.A., Nikitin, D.A., Ivanova, A.E., Kudinova, A.G., Soina, V.S., and Marfenina, O.E., Soil microbial communities of Eastern Antarctica, Moscow Univ. Biol. Sci. Bull., 2018, vol. 73, pp. 104–112.

    Article  Google Scholar 

  36. Marfenina, O.E., Nikitin, D.A., and Ivanova, A.E., The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (Progress and Russkaya stations), Euras. Soil Sci., 2016, vol. 49, pp. 934–941. https://doi.org/10.1134/S106422931608007X

    Article  Google Scholar 

  37. Matveeva, N.V., Zanokha, L.L., Afonina, O.M., Potemkin, A.D., Patova, E.N., Davydov, D.A., Andre-eva, V.M., Zhurbenko, M.P., Konoreva, L.A., Zmitrovich, I.V., Ezhov, O.N., Shiryaev, A.G., and Kirtsideli, I.Yu., Rasteniya i griby polyarnykh pustyn’ severnogo polushariya (Plants and Fungi of Polar Deserts of the Northern Hemisphere), St. Petersburg: Marafon, 2015.

  38. Moseev, D.S. and Sergienko, L.A., On the flora of islands of the Franz Josef Land archipelago and the northern part of the Novaya Zemlya archipelago (annotated list of species), Uch. Zapiski Petrozavodsk Gos. Univ., 2017, no. 4(165), pp. 48–64.

  39. Moseev, D.S., Sergienko, L.A., Kuzmina, E.Yu., Sonina, A.V., and Zorina, A.A., Vegetation cover of sea terraces of the Franz Josef Land archipelago, Botanic. Zh., 2019, vol. 104, pp. 1355–1385.

    Article  Google Scholar 

  40. Nikitin, D.A., Marfenina, O.E., and Maksimova, I.A., Using the succession approach to study the species composition of microscopic fungi and fungal biomass content in Antarctic soils, Mikologiya Phytopatologiya, 2017a, vol. 51, pp. 211–219.

    Google Scholar 

  41. Nikitin, D.A., Semenov, M.V., Tkhakakhova, A.K., Zhelezova, A.D., Bgazhba, N.A., and Kutovaya, O.V., Copy number of ribosomal genes of mycobiota in soils and soil-like bodies of Franz Josef Land and Novaya Zemlya, in Kompleksnaya naucho-obrazovatel’naya expeditsiya “Arkticheskii plavuchii universitet-2017” (Complex Research and Educational Expedition Arctic Floating University 2017,” Polikin, D.Yu., Ed., Arkhangelsk: KIRA, 2017b, pp. 35–39. [Electronic resource]: materials of the expedition.

  42. Nikitin, D.A., Semenov, M.V., Semikolennykh, A.A., Maksimova, I.A., Kachalkin, A.V., and Ivanova, A.E., Fungal biomass and species diversity of cultured microbiota of soil and substrates of Northbrook Island (Franz Josef Land), Mikologiya Phytopatologiya, 2019, vol. 53, pp. 210–222.| https://doi.org/10.1134/S002636481904010X

  43. Nikitin, D.A., Ivanova, E.A., Zhelezova, A.D., Seme-nov, M.V., Gadzhiumarov, R.G., Tkhakakhova, A.K., Chernov, T.I., Ksenofontova, N.A., and Kutovaya, O.V. Assessment of the impact of no-till and conventional tillage technologies on the microbiome of southern agrochernozems, Euras. Soil Sci., 2020, vol. 53, pp. 1782–1793. https://doi.org/10.1134/S106422932012008X

    Article  CAS  Google Scholar 

  44. Nikitin, D.A., Ecological characteristics of Antarctic fungi, Mikologiya Phytopatologiya, 2021, vol. 55, pp. 79–104. https://doi.org/10.31857/S0026364821020070

    Article  Google Scholar 

  45. Nikitin, D.A., Lysak, L.V., Badmadashiev, D.V., Kholod, S.S., Mergelov, N.S., Dolgikh, A.V., and Goryachkin, S.V., Biological activity of soils in the north of the Novaya Zemlya archipelago: the influence of the largest glacier in Russia, Euras. Soil Sci., 2021a, vol. 54, pp. 1207–1230. https://doi.org/10.1134/S1064229321100082

    Article  Google Scholar 

  46. Nikitin, D.A., Lysak, L.V., Kutovaya, O.V., and Gracheva, T.A., Ecological and trophic structure and taxonomic characteristics of communities of soil microorganisms in the northern part of the Novaya Zemlya archipelago, Euras. Soil Sci., 2021b, vol. 54, pp. 1689–1704. https://doi.org/10.1134/S1064229321110107

    Article  Google Scholar 

  47. Panikov, N.S., Subzero activity of cold-adapted yeasts, in Cold-Adapted Yeasts, Buzzini, P. and Margesin, R., Eds., Berlin, Heidelberg: Springer, 2014, pp. 295–323. https://doi.org/10.1007/978-3-642-39681-6_14

    Book  Google Scholar 

  48. Sannino, C., Tasselli, G., Filippucci, S., Turchetti, B., and Buzzini, P., Yeasts in nonpolar cold habitats, in Yeasts in Natural Ecosystems: Diversity, Buzzini, P., Lachance, M.A., and Yurkov, A., Eds., Cham: Springer, 2017, pp. 367–396. https://doi.org/10.1007/978-3-319-62683-3_12

    Book  Google Scholar 

  49. Safronova, I.N. and Yurkovskaya, T.K., Zonal patterns of the vegetation cover of the plains of European Russia and their display on the map, Botan. Zh., 2015, vol. 100, pp. 1121–1141.

    Article  Google Scholar 

  50. Seifert, K.A. and Gams, W., The genera of Hyphomycetes— 2011 update, Persoonia, 2011, vol. 27, pp. 119–129. https://doi.org/10.3767/003158511X617435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Semenov, M.V., Nikitin, D.A., Stepanov, A.L., and Semenov, V.M., The structure of bacterial and fungal communities in the rhizosphere and root-free loci of gray forest soil, Euras. Soil Sci., 2019a, vol. 52, pp. 319–332. https://doi.org/10.1134/S1064229319010137

    Article  CAS  Google Scholar 

  52. Semenov, M.V., Manucharova, N.A., Krasnov, G.S., Nikitin, D.A., and Stepanov, A.L., Biomass and taxonomic structure of microbial communities in soils of the right-bank basin of the Oka River, Euras. Soil Sci., 2019b, vol. 52, pp. 971–981.

    Article  CAS  Google Scholar 

  53. Tsuji, M. and Hoshino, T., Fungi in Polar Regions, Tsuji, M. and Hoshino, T., Eds., Boca Raton: CRC Press, Taylor and Francis Group, 2019.

    Book  Google Scholar 

  54. Vlasov, D.Yu., Zelenskaya, M.S., Kirtsideli, I.Yu., Abakumov, E.V., Krylenkov, V.A., and Lukin, V.V., Fungi on natural and anthropogenic substrates in western Antarctic, Mikologiya Phytopatologiya, 2012, vol. 46, pp. 20–26.

    Google Scholar 

  55. Wang, M., Jiang, X., Wu, W., Hao, Y., Su, Y., Cai, L., Xiang, M., and Liu, X., Psychrophilic fungi from the world’s roof, Persoonia, 2015, vol. 34, pp. 100–112. https://doi.org/10.3767/003158515X685878

    Article  CAS  PubMed  Google Scholar 

  56. Yadav, A.N., Verma, P., Kumar, V., Sangwan, P., Mishra, S., Panjiar, N., Gupta, V.K., and Saxena, A.K., Biodiversity of the genus Penicillium in different habitats, in New and Future Developments in Microbial Biotechnology and Bioengineering, Gupta, V.K., Ed., Elsevier, 2018, pp. 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Book  Google Scholar 

  57. Zhurbenko, M.P., Lichenophilic mycobiota of Russian Arctic: taxonomic anaysis, Mikologiya Phytopatologiya, 2011, vol. 45, pp. 387–396.

    Google Scholar 

  58. Zvyagintsev, D.G., Metody pochvennoi mikrobiologii i biokhimii (Methods of Soil Microbiology and Biochemistry), Moscow: Mosk. Gos. Univ., 1991.

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Arctic Floating University Project of Lomonosov Northern (Arctic) Federal University and personally to K.S. Zaikov for organizing field studies in Franz Josef Land, as well as to the to the staff of the Geography and Soil Evolution Department of the Institute of Geography of the Russian Academy of Sciences and personally to S.V. Goryachkin for helping them determine the taxonomic affiliation of the tested soils.

Funding

This study was supported by the Russian Foundation for Basic Research, projects no. 20-04-00328 (conducting microbiological research) and no. 18-05-60279 (collecting, describing, and chemically testing research subjects).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nikitin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interests.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Oleskin

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, D.A., Semenov, M.V. Characterization of Franz Josef Land Soil Mycobiota by Microbiological Plating and Real-time PCR. Microbiology 91, 56–66 (2022). https://doi.org/10.1134/S002626172201009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626172201009X

Keywords:

Navigation