Skip to main content
Log in

Effects of Mineral Salts on the Activity and Composition of a Mixed Culture of Acidophilic Microorganisms

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The effect of mineral salts on an acidophilic mixed culture was investigated. The tested mixed culture included representatives of the genera Leptospirillum, Sulfobacillus, and Acidiplasma. Elimination of each mineral salt studied led to a decrease in the diversity of the mixed culture. The influence of mineral salts and elements in the 9K medium on microbial reproduction follow the sequence: FeSO4·7H2O > MgSO4·7H2O > (NH4)2SO4 > CaNO3 > K2HPO4 > KCl and Fe > N > Mg > K > Ca > P > Cl. In terms of microbial function, the sequence is as follows: FeSO4·7H2O > K2HPO4 > CaNO3 > MgSO4·7H2O > (NH4)2SO4 > KCl and Fe > K > P > Ca > Mg > N > Cl. The significantly influenced genera were Cuniculiplasma, A-plasma, Ferroplasma, Sulfobacillus, and Leptospirillum. Sulfur oxidation and nitrogen fixation were the most severely affected microbial functions. This research provides a basis for the improvement of microbial cultures applied for the bioleaching and optimization of the biometallurgical process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Andrews, S., Norton, I., Salunkhe, A.S., Goodluck, H., Aly, W.S.M., Mourad-Agha, H., and Cornelis, P., Control of iron metabolism in bacteria, Metal Ions in Life Sciences, 2013, vol. 12, pp. 203–239.

    Article  Google Scholar 

  2. Behera, B.C., Singdevsachan, S.K., Mishra, R.R., Dutta, S.K., and Thatoi, H.N., Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review, Biocatalysis and Agricultural Biotechnology, 2014, vol. 3, no. 2, pp. 97–110.

    Article  Google Scholar 

  3. Brierley, C.L. and Brierley, J.A., Progress in bioleaching: part B: applications of microbial processes by the minerals industries, Appl. Microbiol. Biot., 2013, vol. 97, no. 17, pp. 7543–7552.

    Article  CAS  Google Scholar 

  4. Bulaev, A.G., Effect of ferric sulfate on activity of moderately thermophilic acidophilic iron-oxidizing microorganisms, Microbiology (Moscow), 2017, vol. 86, no. 4, pp. 469–475.

    Article  CAS  Google Scholar 

  5. Bulaev, A. G., Kanygina, A. V., and Manolov, A. I., Genome analysis of Acidiplasma sp. MBA-1, a polyextremophilic archaeon predominant in the microbial community of a bioleaching reactor, Microbiology (Moscow), 2017, vol. 86, no. 1, pp. 80–87.

  6. Chen, L., Huang, L., Méndez-García, C., Kuang, J., Hua, Z., Liu, J., and Shu, W., Microbial communities, processes and functions in acid mine drainage ecosystems, Curr. Opin. Biotech., 2016, vol. 38, no. 4, pp. 150–158.

    Article  CAS  Google Scholar 

  7. Cui, R., Yang, H., Chen, S., Zhang, S., and Li, K., Valence variation of arsenic in bioleaching process of arsenic-bearing gold ore, Trans. Nonferrous. Met. Soc. China., 2010, vol. 20, pp. 1171–1176.

    Article  CAS  Google Scholar 

  8. Egorova, M.A., Tsaplina, I.A., Zakharchuk, L.M., Bogdanova, T.I., and Krasil’Nikova, E.N., Effect of cultivation conditions on the growth and activities of sulfur metabolism enzymes and carboxylases of Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41, Appl. Biochem. Microbio-l., 2004, vol. 40, no. 4, pp. 381–387.

    Article  CAS  Google Scholar 

  9. Elkina, Y.A., Melnikova, E.A., Melamud, V.S., and Bulaev, A.G., Bioleaching of enargite and tennantite by moderately thermophilic acidophilic microorganisms, Microbiology (Moscow), 2020, vol. 89, no. 4, pp. 413–424.

    Article  CAS  Google Scholar 

  10. Falagán, C. and Johnson, D.B., The significance of pH in dictating the relative toxicities of chloride and copper to acidophilic bacteria, Res. Microbiol., 2018, vol. 169, no. 10, pp. 552–557.

    Article  Google Scholar 

  11. Ghorbani, Y., Franzidis, J., and Petersen, J., Heap leaching technology—current state, innovations and future directions: a review, Min. Proc. Ext. Met. Rev., 2015, vol. 37, no. 2, pp. 73–119.

    Google Scholar 

  12. Golyshina, O.V., Lünsdorf, H. and Golyshin, P.N., Acidiplasma, New Jersey: Wiley, 2016.

    Book  Google Scholar 

  13. Golyshina, O.V., Pivovarova, T.A., Karavaiko, G.I., Kondratéva, T.F., Moore, E.R., Abraham, W.R., Lünsdorf, H., Timmis, K.N., Yakimov, M.M., and Golyshin, P.N., Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, no. 3, pp. 997–1006.

    Article  CAS  Google Scholar 

  14. Jafari, M., Abdollahi, H., Shafaei, S.Z., Gharabaghi, M., Jafari, H., Akcil, A., and Panda, S., Acidophilic bioleaching: a review on the process and effect of organic–inorganic reagents and materials on its efficiency, Min. Proc. Ext. Met. Rev., 2019, vol. 40, no. 2, pp. 87–107.

    Article  CAS  Google Scholar 

  15. Johnson, D.B., Biodiversity and interactions of acidophiles: key to understanding and optimizing microbial processing of ores and concentrates, T. Nonferr. Metal. Soc., 2008, vol. 18, no. 6, pp. 1367–1373.

    Article  CAS  Google Scholar 

  16. Kondrat’eva, T.F., Pivovarova, T.A., Tsaplina, I.A., Fomchenko, N.V., Zhuravleva, A.E., Murav, Ev., M.I., Melamud, V.S., and Bulayev, A.G., Diversity of the communities of acidophilic chemolithotrophic microorganisms in natural and technogenic ecosystems, Microbiology (Moscow), 2012, vol. 81, no. 1, pp. 1–24.

    Article  Google Scholar 

  17. Li, X., Kappler, U., Jiang, G., and Bond, P.L., The ecology of acidophilic microorganisms in the corroding concrete sewer environment, Front. Microbiol., 2017, vol. 8, p. 683.

    Article  Google Scholar 

  18. Maathuis, F.J., Physiological functions of mineral macronutrients, Curr. Opin. Plant Biol., 2009, vol. 12, no. 3, pp. 250–258.

    Article  CAS  Google Scholar 

  19. Ochrombel, I., Ott, L., Krämer, R., Burkovski, A., and Marin, K., Impact of improved potassium accumulation on pH homeostasis, membrane potential adjustment and survival of Corynebacterium glutamicum, Biochim. Biophys. Acta (BBA)—Bioenergetics, 2011, vol. 1807, no. 4, pp. 444–450.

    Article  CAS  Google Scholar 

  20. Panda, S., Akcil, A., Pradhan, N. and Deveci, H., Current scenario of chalcopyrite bioleaching: a review on the recent advances to its heap-leach technology, Bioresource Technol., 2015, vol. 196, pp. 694–706.

    Article  CAS  Google Scholar 

  21. Pathak, A., Dastidar, M.G., and Sreekrishnan, T.R., B-ioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: a comparative study, J. Hazard. Mater., 2009, vol. 171, nos. 1−3, pp. 273–278.

    Article  CAS  Google Scholar 

  22. Sand, W., Gehrke, T., Jozsa, P., and Schippers, A., (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching, Hydrometallurgy, 2001, vol. 59, nos. 2−3, pp. 159–175.

    Article  CAS  Google Scholar 

  23. Spohn, M., Element cycling as driven by stoichiometric homeostasis of soil microorganisms, Basic Appl. Ecol., 2016, vol. 17, no. 6, pp. 471–478.

    Article  Google Scholar 

  24. Tan, L., Qu, Y., Zhou, J., Ma, F., and Li, A., Dynamics of microbial community for X-3B wastewater decolorization coping with high-salt and metal ions conditions, Bioresource Technol., 2009, vol. 100, no. 12, pp. 3003−3009.

    Article  CAS  Google Scholar 

  25. Thweatt, J.L., Canniffe, D.P., and Bryant, D.A., Biosynthesis of chlorophylls and bacteriochlorophylls in green bacteria, Adv. Bot. Res., 2019, vol. 90, pp. 35−89.

    Article  CAS  Google Scholar 

  26. Van der Merwe, J.A., Deane, S.M., and Rawlings, D.E., The chromosomal arsenic resistance genes of Sulfobacillus thermosulfidooxidans, Hydrometallurgy, 2010, vol. 104, nos. 3−4, pp. 477–482.

    Article  CAS  Google Scholar 

  27. Vera, M., Schippers, A., and Sand, W., Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A, Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 17, pp. 7529–7541.

    Article  CAS  Google Scholar 

  28. Watling, H.R., Collinson, D.M., Corbett, M.K., Shiers, D.W., Kaksonen, A.H., and Watkin, E.L.J., Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)- and sulfur-oxidizing microorganisms, Res. Microbiol., 2016, vol. 167, no. 7, pp. 546–554.

    Article  CAS  Google Scholar 

  29. Xu, H., Whiteway, M., and Jiang, L., The tricarboxylic acid cycle, cell wall integrity pathway, cytokinesis and intracellular pH homeostasis are involved in the sensitivity of Candida albicans cells to high levels of extracellular calcium, Genomics, 2018, vol. 111, no. 6, pp. 1226–1230.

    Article  Google Scholar 

  30. Yelton, A.P., Comolli, L.R., Justice, N.B., Castelle, C., Denef, V.J., Thomas, B.C., and Banfield, J.F., Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea, BMC Genomics, 2013, vol. 14, no. 1, p. 485.

    Article  CAS  Google Scholar 

  31. Yin, S.X., Chen, D., Chen, L.M., and Edis, R., Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils, Soil Biol. Biochem., 2002, vol. 34, no. 8, pp. 1131–1137.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Key R&D Program of China (2018YFC1902002), Special Fund for the National Natural Science Foundation of China (U1608254), and the Zijin mining Group Co., Ltd. (ZJKY2017(B)KFJJ01, ZJKY2017(B)KFJJ02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yang.

Ethics declarations

The author Zilong Liu was employed by Tibet Huatailong Mining Development Co., Ltd. The other authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, H., Tong, L. et al. Effects of Mineral Salts on the Activity and Composition of a Mixed Culture of Acidophilic Microorganisms. Microbiology 90, 857–867 (2021). https://doi.org/10.1134/S0026261722010088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722010088

Keywords:

Navigation