Skip to main content
Log in

Diversity of Novel Uncultured Prokaryotes in Microbial Communities of the Yessentukskoye Underground Mineral Water Deposit

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Caucasian Mineral Waters is a unique territory, where various types of mineral waters with overall daily flow over 16 000 m3 are concentrated in a relatively small area. The Yessentukskoye deposit is characterized by high diversity of water types, of which Yessentuki nos. 17 and 4 are produced in the greatest amounts. Biogeochemical activity of microorganisms inhabiting the subsurface hydrosphere is one of the proposed mechanisms responsible for the genesis of these waters. The influence of microbial communities on the quality of balneological water resources is presently quite poorly studied. This is the first report on characterization of two communities inhabiting the water-bearing rocks and mineral waters of the Yessentukskoye deposit. The 16S rRNA gene profiling of these communities revealed predominance of uncultured archaea of the phylum Hadarchaeota (36.6%) in the Yessentuki no. 17 water retrieved from the well 46 and of several new classes of uncultured actinobacteria (29.4%) in the Yessentuki no. 4 water retrieved from the well 49-E. Significant differences were revealed in the structure of microbial communities inhabiting the water-bearing horizons of these two wells having different hydrochemical characteristics. Enrichment and pure cultures of the microorganisms belonging to the less abundant taxa were obtained. Analysis of metadata on genomic properties of prokaryotes of the dominant taxa, revealed in this work, indicates their ability to grow chemoautotrophically and thus, their potential involvement in redox transformations of the water-bearing rocks and the gas component of mineral waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Baker, B.J., Saw, J.H., Lind, A.E., Lazar, C.S., Hinrichs, K.-U., Teske, A.P., and Ettema, T.J.G., Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea, Nat. Microbiol., 2016, vol. 1, art. 16002.

    Article  CAS  PubMed  Google Scholar 

  2. Bergey’s Manual of Systematics of Archaea and Bacteria, Whitman, W.B., Ed., Bergey’s Manual Trust, Hoboken, New Jersey, Wiley, 2015.

  3. Biddle, J.F., Lipp, J.S., Lever, M.A., Lloyd, K.G., Sørensen, K.B., Anderson, R., Fredricks, H.F., Elvert, M., Kelly, T.J., Schrag, D.P., Sogin, M.L., Brenchley, J.E., Teske, A., House, C.H., and Hinrichs, K.U., Heterotrophic Archaea dominate sedimentary subsurface ecosystems of Peru, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 3846–3851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bird, J.T., Tague, E.D., Zinke, L., Schmidt, J.M., Steen, A.D., Reese, B., Marshall, I.P.G., Webster, G., Weightman, A., Castro, H.F., Campagna, S.R., and Lloyd, K.G., Uncultured microbial phyla suggest mechanisms for multi-thousand-year subsistence in Baltic Sea sediments, mBio, 2019, vol. 10. e02376-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, C.-L., Macarie, H, Ramirez, I., Olmos, A., Ong, S.L., Monroy, O., and Liu, W.-T., Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate, Microbiology (SGM), 2004, vol. 150, pp. 3429–3440.

    Article  CAS  PubMed  Google Scholar 

  6. Christopoulou-Aletra, H., Togia, A., and Varlami, C., The “smart” Asclepieion: a total healing environment, Arch. Hellenic Med., 2010, vol. 27, pp. 259–263.

    Google Scholar 

  7. Evans, P.N., Parks, D.H., Chadwick, G.L., Robbins, S.J., Orphan, V.J., Golding, S.D., and Tyson, G.W., Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics, Science, 2015, vol. 350, pp. 434–438.

    Article  CAS  PubMed  Google Scholar 

  8. Finneran, K.T., Forbush, H.M., VanPraagh, C.V.G, and Lovley, D.R., Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1929–1935.

    CAS  PubMed  Google Scholar 

  9. França, L., Albuquerque, L., and da Costa, M.S., Cavicella subterranea gen. nov., sp. nov., isolated from a deep mineral-water aquifer, and emended description of the species Perlucidibaca piscinae, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 3812–3817.

    Article  PubMed  Google Scholar 

  10. Gohl, D.M., MacLean, A., Hauge, A., Becker, A., Walek, D., and Beckman, K.B., An optimized protocol for high-throughput amplicon-based microbiome profiling, Protoc. Exch., 2016. https://doi.org/10.1038/protex.2016.030

  11. He, Y., Li, M., Perumal, V., Feng, X., Fang, J., Xie, J., Sievert, S.M., and Wang, F., Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments, Nat. Microbiol., 2016, vol. 1, art. 16035.

    Article  CAS  PubMed  Google Scholar 

  12. Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G., and DeLong, E.F., Methane-consuming archaebacteria in marine sediments, Nature, 1999, vol. 398, pp. 802–805.

    Article  CAS  PubMed  Google Scholar 

  13. Huber, J.A., Johnson, H.P., Butterfield, D.A., and Baross, J.A., Microbial life in ridge flank crustal fluids, Environ. Microbiol., 2006, vol. 8, pp. 88–99.

    Article  CAS  PubMed  Google Scholar 

  14. Hugerth, L.W., Wefer, H.A., Lundin, S., Jakobsson, H.E., Lindberg, M., Rodin, S., Engstrand, L., and Andersson, A.F., DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies, Appl. Environ. Microbiol., 2014, vol. 80, pp. 5116–5123.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Iino, T., Tamaki, H., Tamazawa, S., Ueno, Y., Ohkuma, M., Suzuki, K., Igarashi, Y., and Haruta, S., Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata, Microbes Environ., 2013, vol. 28, pp. 244–250.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jousset, A., Bienhold, C., Chatzinotas, A., Gallien, L., Gobet, A., Kurm, V., Küsel, K., Rillig, M.C., and Rivett, D.W., Where less may be more: how the rare biosphere pulls ecosystems strings, ISME J., 2017, vol. 11, pp. 853–862.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kadnikov, V., Mardanov, A., Beletsky, A., Karnachuk, O., and Ravin, N., Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle, Extremophiles, 2019, vol. 23, pp. 189–200.

    Article  CAS  PubMed  Google Scholar 

  18. Kato, S., Hashimoto, K., and Watanabe, K., Methanogenesis facilitated by electric syntrophy via semiconductive FeOx minerals, Environ. Microbiol., 2012, vol. 14, pp. 1646–1654.

    Article  CAS  PubMed  Google Scholar 

  19. Kevbrin, V.V. and Zavarzin, G.A., The influence of sulfur compounds on the growth of halophilic homoacetic bacterium Acetohalobium arabaticum, Microbiology (Moscow), 1992, vol. 61, pp. 563–571.

    Google Scholar 

  20. Key, T.A., Bowman, K.S., Lee, I., Chun, J., Albuquer-que, L., da Costa, M.S., Rainey, F.A., and Moe, W.M., Dehalogenimonas formicexedens sp. nov., a chlorinated alkane-respiring bacterium isolated from contaminated groundwater, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 1366–1373.

    Article  CAS  PubMed  Google Scholar 

  21. Krauze, P., Kämpf, H., Horn, F., Liu, Q., Voropaev, A., Wagner, D., and Alawi, M. Microbiological and geochemical survey of CO2-dominated mofette and mineral waters of the Cheb Basin, Czech Repoublic, Front. Microbiol., 2017, vol. 8, art. 2446.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kudlaenko, L.N., On the role of biochemical processes in changes in the composition of Titon and Valanzin mineral waters, Vopr. Kurortol. Fizioterap. Lech. Fizkul., 1976, no. 3, pp. 70–74.

  23. Leclerc, H. and da Costa, M.S., Microbiology of natural mineral waters, in Technology of Bottled Water, Senior, D. and Dege, N., Eds., Blackwell, 2005, 2nd ed. , pp. 325–387.

    Google Scholar 

  24. Lee, J., Koo, T., Yulisa, A., and Hwang, S., Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition, J. Environ. Manage., 2019, vol. 241, pp. 418–426.

    Article  CAS  PubMed  Google Scholar 

  25. Lesaulnier, C.C., Herbold, C.W., Pelikan, C., Berry, D., Gérard, C., Le Coz, X., Gagnot, S., Niggemann, J., Dittmar, T., Singer, G.A., and Loy, A., Bottled aqua incognita: microbiota assembly and dissolved organic matter diversity in natural mineral waters, Microbiome, 2017, vol. 5, p. 126.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lloyd, K.G., Alperin, M.J., and Teske, A., Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea, Environ. Microbiol., 2011, vol. 13, pp. 2548–2564.

    Article  CAS  PubMed  Google Scholar 

  27. Menon, B.B., Dou, Z., Heinhorst, S., Shively, J.M., and Cannon, G.C., Halothiobacillus neapolitanus carboxysomes sequester heterologous and chimeric RubisCO species, PLoS One, 2008, art. 0003570.

  28. Merino, N., Kawai, M., Boyd, E.S., Colman, D.R., M-cGlynn, S.E., Nealson, K.H., Kurokawa, K., and Hongoh, Y., Single-cell genomics of novel actinobacteria with the Wood–Ljungdahl pathway discovered in a serpentinizing system, Front. Microbiol., 2020, vol. 11, art. 1031.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Merkel, A.Y., Chernyh, N.A., Pimenov, N.V., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Diversity and metabolic potential of the terrestrial mud volcano microbial community with a high abundance of Archaea mediating the anaerobic oxidation of methane, Life, 2021, vol. 11, p. 953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Merkel, A.Y., Tarnovetskii, I.Y., Podosokorskaya, O.A., and Toshchakov, S.V., Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities, Microbiology (Moscow), 2019, vol. 88, pp. 671–680.

    Article  CAS  Google Scholar 

  31. Muravleva, R.E., Rubleva, G.A., and Timasheva, I.N., Sanitary bacteriological assessment and biological activity of the mineral water of well 9-bis, Nagut deposit, in Kurortnye resursy i ikh ispol’zovane (Resort Resources and Their Application), Proc. Pyatigorsk Res. Inst. Kurortol. Physiotherapy, Krivobokov, N.G., Ed., Pyatigorsk, 1989, pp. 113–119.

  32. Nazina, T.N., Ivanova, A.E., Kanchaveli, L.P., and Rozanova, E.P., Desulfotomaculum kuznetsovii sp. nov., a new spore-forming thermophilic methylotrophic sulfate-reducing bacterium, Microbiology (Moscow), 1988, vol. 57, pp. 823–827.

    CAS  Google Scholar 

  33. Parkes, R.J., Webster, G., Cragg, B.A., Weightman, A.J., Newberry, C.J., Ferdelman, T.G., Kallmeyer, J., Jørgensen, B.B., and Fry, J.C., Deep sub-seafloor prokaryotes stimulated at interfaces over geological time, Nature, 2005, vol. 436, pp. 390–394.

    Article  CAS  PubMed  Google Scholar 

  34. Parks, D.H., Chuvochina, M., Chaumeil, PA., Rinke, C., Mussig, A.J., and Hugenholtz, P., A complete domain-to-species taxonomy for Bacteria and Archaea, Nat. Biotechnol., 2020, vol. 38, pp. 1079–1086.

    Article  CAS  PubMed  Google Scholar 

  35. Paul, C. and Pohnert, G., Production and role of volatile halogenated compounds from marine algae, Nat. Prod. Rep., 2011, vol. 28, pp. 186–195.

    Article  CAS  PubMed  Google Scholar 

  36. Potapov, E.G., Danilov, S.R., and Gadzhikhanova, S.U., Genesis of carbonate-sulfide mineral waters of the Yessentuki deposit according to results of hydrochemical, microbiological, and isotopic studies, Kurort. Med., 2017, no. 1, pp. 11–16.

  37. Potapov, E.G., Dubinina, G.A., Danilov, S.R., Gadzhi-khanova, S.U., Shchelkunov, A.V., and Grabovich, M.Yu., Physicochemical and microbiological investigation of the CMW region subterranean mineral waters, Kurort. Med., 2014, no. 4, pp. 14–20.

  38. Potapov, E.G., The anoxic Maastrichtian-Danian event and its effect on the hydrochemical picture of subterranean mineral waters of the Caucasian Mineral Waters region, Kurort. Med., 2019, no. 3, pp. 4–15.

  39. Quevedo-Sarmiento, J., Ramos-Cormenzana, A., and Gonzalez-Lopez, J., Isolation and characterization of aerobic heterotrophic bacteria from natural spring waters in the Lanjaron area (Spain), J. Appl. Bacteriol., 1986, vol. 61, pp. 365–372.

    Article  CAS  PubMed  Google Scholar 

  40. Sala-Comorera, L., Caudet-Segarra, L., Galofréc, B., Lucena, F., Blanch, A.R., and García-Aljaro, C., Unravelling the composition of tap and mineral water microbiota: divergences between next-generation sequencing techniques and culture based methods, Int. J. Food Microbiol., 2020, vol. 334, art. 108850.

    Article  CAS  PubMed  Google Scholar 

  41. Shinkarenko, A.L., Hydrogeological Characteristics and Genesis of Caucasian Mineral Waters, Pyatigorsk: Pyatigorsk Res. Inst. Kurortol. Physiotherapy, 1941.

    Google Scholar 

  42. Skopina, M.Yu., Vasileva, A.A., Pershina, E.V., and Pinevich, A.V., Diversity at low abundance: the phenomenon of the rare bacterial biosphere, Microbiology (Moscow), 2016, vol. 85, pp. 272–282.

    Article  CAS  Google Scholar 

  43. Sohm, J.A., Webb, E.A., and Capone, D.G., Emerging patterns of marine nitrogen fixation, Nature Rev. Microbiol., 2011, vol. 9, pp. 499–508.

    Article  CAS  Google Scholar 

  44. Soriano-Lerma, A., Pérez-Carrasco, V., Sánchez-Marañón, M., Ortiz-González, M., Sánchez-Martín, V., Gijón, J., Navarro-Mari, J.M., García-Salcedo, J.A., and Soriano, M., Influence of 16S rRNA target region on the outcome of microbiome studies in soil and saliva samples, Sci. Rep., 2020, vol. 10, art. 13637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sułowicz, S., Bondarczuk, K, Ignatiuk, D., Jania, J.A., and Piotrowska-Seget, Z., Microbial communities from subglacial water of naled ice bodies in the forefield of Werenskioldbreen, Svalbard, Sci. Total Environ., 2020, vol. 723, art. 138025.

    Article  PubMed  Google Scholar 

  46. Takai, K., Moser, D.P., DeFlaun, M., Onstott, T.C., and Frederickson, J.K., Archaeal diversity in waters from deep South African gold mines, Appl. Environ. Microbiol., 2001, vol. 67, pp. 5750–5760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. The Prokaryotes, Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F., Eds., Berlin: Springer, 2014.

    Google Scholar 

  48. Thomas, C., Francke, A., Vogel, H., Wagner, B., and Ariztegui, D., Microbial life in ridge flank crustal fluids settings, Microorganisms, 2020, vol. 8, art. 1736.

    Article  CAS  PubMed Central  Google Scholar 

  49. Timmers, P.H.A., Welte, C.U., Koehorst, J.J., Plugge, C.M., Jetten, M.SM, and Stams, A.J.M., Reverse methanogenesis and respiration in methanotrophic archaea, Archaea, 2017, pp. 1654237. https://doi.org/10.1155/2017/1654237

  50. Umezawa, K., Kojima, H., Kato, Y., and Fukui, M., Dissulfurispira thermophila gen. nov., sp. nov., a thermophilic chemolithoautotroph growing by sulfur disproportionation, and proposal of novel taxa in the phylum Nitrospirota to reclassify the genus Thermodesulfovibrio, Syst. Appl. Microbiol. 2021, vol. 44, art. 126184.

    Article  CAS  PubMed  Google Scholar 

  51. Wang, F.P., Zhang, Y., Chen, Y., He, Y., Qi, J., Hinrichs, K.U, Zhang, X.X., Xiao, X., and Boon, N., Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways, ISME J., 2014, vol. 8, pp. 1069–1078.

    Article  CAS  PubMed  Google Scholar 

  52. Wasserfallen, A., Nölling, J., Pfister, P., Reeve, J., and Conway de Macario, E., Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov. and Methanothermobacter marburgensis sp. nov., Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 43–53.

    Article  CAS  PubMed  Google Scholar 

  53. Watanabe, M., Kojima, H., and Fukui, M., Review of Desulfotomaculum species and proposal of the genera Desulfallas gen. nov., Desulfofundulus gen. nov., Desulfofarcimen gen. nov. and Desulfohalotomaculum gen. nov., Int. J. Syst. Evol. Microbiol., 2018, vol. 68, pp. 2891–2899.

    Article  CAS  PubMed  Google Scholar 

  54. Wolin, E.A., Wolin, M.J., and Wolfe, R.S., Formation of methane by bacterial extracts, J. Biol. Chem., 1963, vol. 238, pp. w2882–w2888.

    Article  Google Scholar 

  55. Wrighton, K.C., Agbo, P., Warnecke, F., Weber, K.A., Brodie, E.L., DeSantis, T.Z., Hugenholtz, P., Andersen, G.L., and Coates, J.D., A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells, ISME J., 2008, vol. 2, pp. 1146–1156.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, Y., Shuikui, D., Qingzhu, G., Ganjurjav, H., Xue-xia, W., and Wei, G., “Rare biosphere” plays important roles in regulating soil available nitrogen and plant biomass in alpine grassland ecosystems under climate changes, Agricult. Ecosyst. Environ., 2019, vol. 279, pp. 187–193.

    Article  CAS  Google Scholar 

Download references

Funding

Work on the geological and hydrochemical characteristics of the test subjects, determination of the phylogenetic composition of the microbial communities, isolation of enrichment and pure cultures, and data analysis was supported by the Russian Science Foundation, project no. 21-14-00333. In addition, the work of the SNG, AAM, and DGZ on sampling and samples fixation for storage and further processing was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Gavrilov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, S.N., Potapov, E.G., Prokof’eva, M.I. et al. Diversity of Novel Uncultured Prokaryotes in Microbial Communities of the Yessentukskoye Underground Mineral Water Deposit. Microbiology 91, 28–44 (2022). https://doi.org/10.1134/S0026261722010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722010039

Keywords:

Navigation