Skip to main content
Log in

Exopolysaccharide-Producing Rhizospheric Bacteria Enhance Yield via Promoting Wheat (Triticum aestivum L.) Growth at Early Stages

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Plant-soil interactions directing plant growth are governed by chemical communications among the microorganisms, and between the plants and microbes. A study was conducted to evaluate the effects of seed biopriming with native plant-growth promoting rhizobacteria (PGPR) on growth parameters of wheat. Rhizospheric bacteria isolated from drought-exposed fields were characterized on morphological, biochemically and molecular basis and screened for PGP traits. Nine isolates were able to solubilize essential nutrients, produce plant growth hormone indole acetic acid (IAA), and most of the isolates were positive for siderophore, ammonia, hydrogen cyanide (HCN), and hydrolytic enzyme production. Considerable and varying amounts of exopolysaccharides (EPS) constituted of proteins (amide I, II, III), polysaccharides, nucleic acids and peptidoglycan were produced by few strains that helped in formation of biofilm matrix. Biopriming wheat seeds with selected bacterial isolates brought significant increase in wheat germination, growth, and yield parameters. Correlation analysis revealed that the phytohormone, phosphate solubilization and EPS-producing abilities were the most obvious PGP traits of bacteria related to the growth and yield of wheat plants. Among all the nine bacterial isolates tested, two isolates, viz. Pseudomonas azotoformans JRBHU5 and Burkholderia seminalis JRBHU6, with good colonizing abilities enhanced plant vigor at early stage thereby augmenting wheat growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alexander, M., Introduction to soil microbiology, Soil Sci., 1978, vol. 125, p. 331.

    Article  Google Scholar 

  2. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search Programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.

    Article  CAS  Google Scholar 

  3. Berne, C., Ducret, A., Hardy, G.G., and Brun, Y.V., Adhesins involved in attachment to abiotic surfaces by gram-negative bacteria, Microbial Biofilms, 2015, pp. 163–199.

    Google Scholar 

  4. Bramhachari, P.V. and Dubey, S.K., Isolation and characterization of exopolysaccharide produced by Vibrio harveyi strain VB23, Lett. Appl. Microbiol., 2006, vol. 43, no. 5, pp. 571–577.

    Article  CAS  Google Scholar 

  5. Carson, K.C., Meyer, J.M., and Dilworth, M.J., Hydroxamate siderophores of root nodule bacteria, Soil Biol. Biochem., 2000, vol. 32, no. 1, pp. 11–21.

    Article  CAS  Google Scholar 

  6. Cappuccino, J.G. and Sherman, N., Microbiology: A Laboratory Manual, San Francisco, CA, USA, 2008, 8th ed.

  7. Coenye, T., Liu, L., Vandamme, P., and Li Puma, J.J., Identification of Pandoraea species by 16S ribosomal DNA-based PCR assays, J. Clin. Microbiol, 2001, vol. 39, no. 12, pp. 4452–4455.

    Article  CAS  Google Scholar 

  8. Costa, O.Y.A., Raaijmakers, J.M., and Kuramae, E.E., Microbial extracellular polymeric substances: ecological function and impacts on soil aggregation, Front. Microbiol., 2018, vol. 9, p. 1636.

    Article  Google Scholar 

  9. Dey, R. and Raghuwanshi, R., Comprehensive assessment of growth parameters for screening endophytic bacterial strains in Solanum lycopersicum (Tomato), Heliyon, 2020, vol. 6, no. 10, p. e05325.

    Article  CAS  Google Scholar 

  10. Dubey, A., Saiyam, D., Kumar, A., Hashem, A., Abd_Allah, E.F., and Khan, M.L., Bacterial root endophytes: characterization of their competence and plant growth promotion in soybean (Glycine max (L.) Merr.) under drought stress, Int. J. Environ. Res. Publ. Health, 2021, vol. 18, no. 3, p. 931.

    Article  CAS  Google Scholar 

  11. Elshafie, H.S., Camele, I., Racioppi, R., Scrano, L., Iacobellis, N.S. and Bufo, S.A., In vitro antifungal activity of Burkholderia gladioli pv. Agaricicola against some phytopathogenic fungi, Int. J. Mol. Sci., 2012, vol. 13, pp. 16291–16302.

    Article  CAS  Google Scholar 

  12. Etesami, H., Emami, S., and Alikhani, H.A., Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects: a review, J. Soil Sci. Plant Nutr., 2017, vol. 17, no. 4, pp. 897–911.

    Article  CAS  Google Scholar 

  13. FAOSTAT statistical database, Food and Agriculture Organization of the United Nations, Rome, Italy, 2019.

  14. Flaishman, M.A., Eyal, Z., Zilberstein, A., Voisard, C., and Haas, D., Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida, Mol. Plant-Microbe Interact., 1996, vol. 9, no. 7, pp. 642–645.

    Article  CAS  Google Scholar 

  15. Flemming, H.C. and Wingender, J., The biofilm matrix, Nat. Rev. Microbiol., 2010, vol. 8, p. 623.

    Article  CAS  Google Scholar 

  16. Gupta, S., Kaushal, R., Spehia, R.S., Pathania, S.S., and Sharma, V., Productivity of Capsicum influenced by conjoint application of isolated indigenous PGPR and chemical fertilizers, J. Plant Nutr., 2017, vol. 40, pp. 921–927.

    Article  CAS  Google Scholar 

  17. ISTA, Proceeding of the international seed testing association, international rule for seed testing, Seed Sci. Technol., 1993, vol. 2, pp. 25–30.

    Google Scholar 

  18. Jochum, M.D., McWilliams, K.L., Borrego, E.J., Kolomiets, M.V., Niu, G., and Pierson, E.A., Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses, Front. Microbiol., 2019, vol. 10, p. 2106.

    Article  Google Scholar 

  19. Khalid, A., Arshad, M., and Zahir, Z.A., Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat, J. Appl. Microbiol., 2004, vol. 96, pp. 473–480.

    Article  CAS  Google Scholar 

  20. Kumar, A., Maurya, B.R., and Raghuwanshi, R., Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.), Biocatal. Agric. Biotechnol., 2014, vol. 3, no. 4, pp. 121–128.

    Article  Google Scholar 

  21. Malik, A.U., Malghani, A.L., and Hussain, F., Growth and yield response of wheat (Triticum aestivum L.) to phosphobacterial inoculation, Russ. Agricult. Sci., 2012, vol. 38, pp. 11–13.

    Article  Google Scholar 

  22. Mosharaf, M.K., Tanvir, M.Z.H., Haque, M.M., Haque, M.A., Khan, M.A.A., and Molla, A.H., Metal-adapted bacteria isolated from wastewaters produce biofilms by expressing proteinaceous curli fimbriae and cellulose nanofibers, Front. Microbiol., 2018, vol. 9, p. 1334.

    Article  CAS  Google Scholar 

  23. Naumann, D., FT-infrared and FT-Raman spectroscopy in biomedical research, Appl. Spectroscopy Rev., 2001, vol. 36, pp. 239–298.

    Article  CAS  Google Scholar 

  24. Oleńska, E., Małek, W., Wójcik, M., Swiecicka, I., Thijs, S., and Vangronsveld, J., Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions, a methodical review, Sci. Total Environ., 2020, vol. 743, p. 140682.

    Article  Google Scholar 

  25. Prasad, J.K., Gupta, S.K., and Raghuwanshi, R., Screening multifunctional plant growth promoting rhizobacteria strains for enhancing seed germination in wheat (Triticum aestivum L.), Int. J. Agric., 2017, vol. 12, no. 2, pp. 64–72.

    Article  CAS  Google Scholar 

  26. Prasad, J.K., Pandey, P., Anand, R., and Raghuwanshi, R., Drought exposed Burkholderia seminalis JRBHU6 exhibits antimicrobial potential through pyrazine-1,4-dione derivatives targeting multiple bacterial and fungal proteins, Front. Microbiol., 2021, vol. 12, p. 513.

    Article  Google Scholar 

  27. Premachandra, D., Hudek, L., Enez, A., Ballard, R., Barnett, S., Franco, C.M.M. and Brau, L., Assessment of the capacity of beneficial bacterial inoculants to enhance Canola (Brassica napus L.) growth under low water activity, Agronomy, 2020, vol. 10, no. 9, p. 1449.

    Article  CAS  Google Scholar 

  28. Raghuwanshi, R. and Prasad, J.K., Perspectives of rhizobacteria with ACC Deaminase activity in plant growth under abiotic stress, in Root Biology. Soil Biology, Giri, B., Prasad, R., and Varma, A., Eds., Springer, 2018, vol. 52.

    Google Scholar 

  29. Sandhya, V.Z., Grover, M., Reddy, G., and Venkateswarlu, B., Alleviation of drought stress effects in sunflower seedling by the exopolysacchrides producing Pseudomonas putida strain GAP-P45, Biol. Fert. Soil., 2009, vol. 46, pp. 17–26.

    Article  CAS  Google Scholar 

  30. Saravanan, V.S., Kumar, M.R., and Sa, T.M., Microbial zinc solubilization and their role on plants, in Bacteria in Agrobiology: Plant Nutrient Management, Berlin: Springer, 2011, pp. 47–63.

    Google Scholar 

  31. Sharma, M., Saleh, D., Charron, J.B., and Jabaji, S., A crosstalk between Brachypodium root exudates, organic acids, and Bacillus velezensis B26, a growth promoting bacterium, Front. Microbiol., 2020, vol. 11, p. 2432.

    Article  Google Scholar 

  32. Sneath, P.H.A. and Sokal, R.R., Numerical Taxonomy. The Principles and Practice of Numerical Classification, San Francisco, Freeman, 1973.

    Google Scholar 

  33. Tamura, K., Stecher, G., and Kumar, S., MEGA 11: Molecular Evolutionary Genetics Analysis Version 11, Mol. Bi-ol. Evol., 2021.

  34. Vardharajula, S., Exopolysaccharide production by drought tolerant Bacillus spp. and effect on soil aggregation under drought stress, J. Microbiol. Biotechnol. Food Sci., 2021, pp. 51–57.

  35. Wakatsuki, T., Metal oxidoreduction by microbial cells, J. Ind. Microbiol., 1995, vol. 14, no. 2, pp. 169−177.

    Article  CAS  Google Scholar 

  36. Wang, X., Sharp, C.E., Jones, G.M., Grasby, S.E., Brady, A.L., and Dunfield, P.F., Stable-isotope probing identifies uncultured Planctomycetes as primary degraders of a complex heteropolysaccharide in soil, Appl. Environ Microbiol., 2015, vol. 81, no. 14, pp. 4607–4615.

    Article  CAS  Google Scholar 

  37. Yasmin, H., Naz, R., Nosheen, A., Hassan, M.N., Ilyas, N., Sajjad, M., Anjum, S., Gao, X., and Geng, Z., Identification of new biocontrol agent against charcoal rot disease caused by Macrophomina phaseolina in soybean (Glycine max L.), Sustainability, 2020a, vol. 12, no. 17, p. 6856.

    Article  CAS  Google Scholar 

  38. Yasmin, H., Naeem, S., Bakhtawar, M., Jabeen, Z., Nosheen, A., and Naz, R., Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress, PLoS One, 2020b, vol. 15, no. 4, p. e0231348.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Jay Kishor Prasad would like to acknowledge the financial support as SRF (Grant no. 09/013(0810)-EMR-I), received from CSIR, Government of India New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: R. Raghuwanshi; J.K. Prasad, Methodology: J.K. Prasad; Formal analysis and investigation: J.K. Prasad; Writing: J.K. Prasad; R. Dey; Writing—review and editing: R. Raghuwanshi, R. Dey, J.K. Prasad, Funding acquisition: J.K. Prasad; Resources: R. Raghuwanshi; Supervision: R. Raghuwanshi.

Corresponding author

Correspondence to R. Raghuwanshi.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.The authors declare that they have no conflicts of interest-.

DATA AVAILABILITY (DATA TRANSPARENCY):

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, J.K., Dey, R. & Raghuwanshi, R. Exopolysaccharide-Producing Rhizospheric Bacteria Enhance Yield via Promoting Wheat (Triticum aestivum L.) Growth at Early Stages. Microbiology 91, 757–769 (2022). https://doi.org/10.1134/S0026261721102622

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721102622

Keywords:

Navigation