Skip to main content
Log in

Prediction of the Metabolic Functions of Nitrogen, Phosphorus, and Sulfur Cycling Bacteria Associated with the Lichen Peltigera frigida

  • Published:
Microbiology Aims and scope Submit manuscript
  • 2 Altmetric


Lichens are currently interpreted as complex self-sustaining ecosystems formed by the interaction of the primary symbionts and other microorganisms. These microorganisms, which colonize the surface of lichen thalli, could be crucial actors in nutrient cycling. Here, we used PICRUSt2 to predict and compare the potential functions of bacteria closely associated with Peltigera frigida thalli and their substrates. We found that these bacteria could potentially transform organic and inorganic molecules related to nitrogen, phosphorus, and sulfur cycles. Although further experiments to verify these potential contributions are required, these results reinforce the proposal of the nutrient-cycling role of bacteria associated with P. frigida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others


  1. Aschenbrenner, I., Cernava, T., Berg, G., and Grube, M., Understanding microbial multi-species symbioses, Front. Microbiol., 2016, vol. 7, pp. 1–9.

    Article  Google Scholar 

  2. Barton, L.L., Fardeau, M.-L., and Fauque, G.D., Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation, Dordrecht: Springer, 2014.

  3. Borie, F. and Rubio, R., Total and organic phosphorus in Chilean volcanic soils, Gayana Bot., 2003, vol. 60, no. 1, pp. 69–78.

    Article  Google Scholar 

  4. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P., DADA2: high-resolution sample inference from Illumina amplicon data, Nat. Methods, 2016, vol. 13, no. 7, pp. 581–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Taylor, C.M., Huttenhower, C., and Langille, M.G.I., PICRUSt2 for prediction of metagenome functions, Nat. Biotechnol., 2020, vol. 38, no. 6, pp. 685–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gadsdon, S.R., Dagley, J.R., Wolseley, P.A., and Power, S.A., Relationships between lichen community composition and concentrations of NO2 and NH3, Environ. Pollut., 2010, vol. 158, no. 8, pp. 2553–2560.

    Article  CAS  PubMed  Google Scholar 

  7. Grube, M., Cernava, T., Soh, J., Fuchs, S., Aschenbrenner, I., Lassek, C., Wegner, U., Becher, D., Riedel, K., Sensen, C.W., and Berg, G., Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics, ISME J., 2015, vol. 9, pp. 412–424.

    Article  CAS  PubMed  Google Scholar 

  8. Hauck, M., Ammonium and nitrate tolerance in lichens, Environ. Pollut., 2010, vol. 158, no. 5, pp. 1127–1133.

    Article  CAS  PubMed  Google Scholar 

  9. Hawksworth, D.L. and Grube, M., Lichens redefined as complex ecosystems, New. Phytol., 2020, vol. 227, no. 5, pp. 1281–1283.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hawksworth, D.L. and Honegger, R., The Lichen Thallus: A Symbiotic Phenotype of Nutritionally Specialized Fungi and Its Response to Gall Producers, N.Y.: Oxford Univ. Press for the Systematics Association, 1994.

    Google Scholar 

  11. Hill, D.J., Some effects of sulphite on photosynthesis in lichens, New. Phytol., 1974, vol. 73, no. 6, pp. 1193–1205.

    Article  CAS  Google Scholar 

  12. Hillel, D., Hatfield, J.L., Scow, K.M., Powlson, D.S., Singer, M.J., Rosenzweig, C., and Sparks, D.L., Encyclopedia of Soils in the Environment, Massachusetts: Academic, 2004.

    Google Scholar 

  13. Hodkinson, B.P., Gottel, N.R., Schadt, C.W., and Lutzoni, F., Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome, Environ. Microbiol., 2012.

  14. Leiva, D., Fernández-Mendoza, F., Acevedo, J., Carú, M., Grube, M., and Orlando, J., The bacterial community of the foliose macro-lichen Peltigera frigida is more than a mere extension of the microbiota of the subjacent substrate, Microb. Ecol., 2021.

  15. Liu, Y.-W., Denkmann, K., Kosciow, K., Dahl, C., and Kelly, D.J., Tetrathionate stimulated growth of Campylobacter jejuni identifies a new type of bi-functional tetrathionate reductase (TsdA) that is widely distributed in bacteria, Mol. Microbiol., 2013, vol. 88, no. 1, pp. 173–188.

    Article  CAS  PubMed  Google Scholar 

  16. Magain, N., Tniong, C., Goward, T., Niu, D., Goffinet, B., Sérusiaux, E., Vitikainen, O., Lutzoni, F., and Miadlikowska, J., Species delimitation at a global scale reveals high species richness with complex biogeography and patterns of symbiont association in Peltigera section Peltigera (lichenized Ascomycota: Lecanoromycetes), Taxon, 2018, vol. 67, no. 5, pp. 836–870.

    Article  Google Scholar 

  17. Martínez, I., Burgaz, A.R., Vitikainen, O., and Escudero, A., Distribution patterns in the genus Peltigera Willd., Lichenologist, 2003.

  18. Mizalski, Z. and Niewadomska, E., Comparison of sulphite oxidation mechanisms in three lichen species, New. Phytol., 1993, vol. 123, no. 2, pp. 345–349.

    Article  Google Scholar 

  19. Orlando, J., Almendras, K., Veas-Mattheos, K., Pezoa, M., and Carú, M., Peltigera cyanolichens from Southern Chile, version 1.4, Laboratory of Microbial Ecology (Laboratorio de Ecología Microbiana), Universidad de Chile, Occurrence dataset.

  20. Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.A., and Hugenholtz, P., A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life, Nat. Biotechnol., 2018, vol. 36, no. 10, pp. 996–1004.

    Article  CAS  PubMed  Google Scholar 

  21. Quilhot, W., Cuellar, M., Díaz, R., Riquelme, F., and Rubio, C., Lichens of Aisen, Southern Chile, Gayana. Botánica, 2012, vol. 69, no. 1, pp. 57–87.

    Article  Google Scholar 

  22. Sigurbjörnsdóttir, M., Andrésson, Ó. S., and Vilhelmsson, O., Nutrient scavenging activity and antagonistic factors of non-photobiont lichen-associated bacteria: a review, World J. Microbiol. Biotechnol., 2016, vol. 32, no. 68, p. 68.

    Article  CAS  PubMed  Google Scholar 

  23. Zumft, W.G., Cell biology and molecular basis of denitrification., Microbiol. Mol. Biol. Rev., 1997, vol. 61, no. 4, pp. 533–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zúñiga, C., Leiva, D., Ramírez-Fernández, L., Carú, M., Yahr, R., and Orlando, J., Phylogenetic diversity of Peltigera cyanolichens and their photobionts in Southern Chile and Antarctica, Microbes. Environ., 2015, vol. 30, no. 2, pp. 172–179.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


This research was funded by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT, Chilean National Fund for Scientific and Technological Development) [1181510].

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. Orlando.

Ethics declarations

The authors declare no conflict of interest.

The authors declare that animals were not used in the experiments.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzuela, C., Leiva, D., Carú, M. et al. Prediction of the Metabolic Functions of Nitrogen, Phosphorus, and Sulfur Cycling Bacteria Associated with the Lichen Peltigera frigida. Microbiology 91, 604–610 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: