Skip to main content

Thermotolerant Methanotrophic Bacteria from Sediments of the River Chernaya, Crimea, and Assessment of Their Growth Characteristics


The technology of single-cell protein production from natural gas is based on using thermotolerant methanotrophic bacteria with high growth rates on methane. So far, the spectrum of strains used for industrial purposes was restricted to members of the genus Methylococcus. This poses limitations to further development of this technology and fuels the search for new cultures of fast-growing methanotrophs. The later task was addressed in the present work by analyzing the sediment samples of the Chernaya River, Crimea. Molecular analysis of the microbial community composition in the sediment revealed Gammaproteobacteria as the predominant group (33‒42% of all retrieved 16S rRNA gene fragments), as well as Chloroflexi, Actinobacteria, Alphaproteobacteria, Bacteroidota, and Acidobacteria as other numerically significant community members. The methanotrophic enrichment culture obtained from the sediment contained bacteria of the genus Methylomonas as the major component, with the relative abundance of up to 60% of all 16S rRNA gene fragments. The use of various strategies for methanotroph isolation resulted in obtaining three isolates of target bacteria of the genera Methylomonas, Methylomagnum and Methylocystis. The optimal growth temperatures of these isolates were 25, 35, and 40°С, respectively. The highest specific growth rate in batch culture, 0.21 h−1, was determined for Methylocystis sp. Kr9, which displayed 99.22 and 99.13% 16S rRNA gene sequence similarity to the type strains of two Methylocystis species, Methylocystis echinoides IMET 10491T and Methylocystis parvus OBBPT, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Auman, A.J., Stolyar, S., Costello, A.M., and Lidstrom, M.E., Molecular characterization of methanotrophic isolates from freshwater lake sediment, Appl. Environ. Micro-biol., 2000, vol. 66, pp. 5259–5266.

    CAS  Google Scholar 

  3. 3

    Beck, D.A.C., Kalyuzhnaya, M.G., Malfatti, S., Tringe, S.G., del Rio, T.G., Ivanova, N., Lidstrom, M.E., and Chistoserdova, L., A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae, PeerJ., 2013, vol. 1:e23.

    PubMed  PubMed Central  Google Scholar 

  4. 4

    Bol’shakov, A.M. and Egorov, A.V., Application of the phase equilibrium degassing in gasometric research, Okeanologiya, 1987, vol. 27, no. 5, pp. 861–862.

    Google Scholar 

  5. 5

    Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol., 2019, vol. 37, pp. 852–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P., DADA2: high-resolution sample inference from Illumina amplicon data, Nat. Methods, 2016, vol. 13, pp. 581–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Cébron, A., Bodrossy, L., Chen, Y., Singer, A.C., Thompson, I.P., Prosser, J.I., and Murrell, J.C., Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing, FEMS Microbiol. Ecol., 2007, vol. 62, pp. 12–23.

    PubMed  Google Scholar 

  8. 8

    Conrado, R.J. and Gonzalez, R., Envisioning the bioconversion of methane to liquid fuels, Science, 2014, vol. 343, pp. 621–623.

    CAS  PubMed  Google Scholar 

  9. 9

    Conrad, R., The global methane cycle: recent advances in understanding the microbial processes involved, Environ. Microbiol. Rep., 2009, vol. 1, pp. 285–292.

    CAS  PubMed  Google Scholar 

  10. 10

    Costello, A.M., Auman, A.J., Macalady, J.L., Scow, K.M., and Lidstrom, M.E., Estimation of methanotroph abundance in a freshwater lake sediment, Environ. Microbiol., 2002, vol. 4, pp. 443–450.

    CAS  PubMed  Google Scholar 

  11. 11

    Coty, V., A critical review of the utilization of methane, Biotech. Bioeng. Symp., 1969, vol. 1, pp. 105–117.

    Google Scholar 

  12. 12

    Danilova, O.V., Belova, S.E., Gagarinova, I.V., and Dedysh, S.N., Microbial community composition and methanotroph diversity of a subarctic wetland in Russia, Microbiology (Moscow), 2016, vol. 85, pp. 583–591.

    CAS  Google Scholar 

  13. 13

    Danilova, O.V., Kulichevskaya, I.S., Rozova, O.N., Detkova, E.N., Bodelier, P.L.E., Trotsenko, Y.A., and Dedysh, S.N., Methylomonas paludis sp. nov., the first acidtolerant member of the genus Methylomonas, from an acidic wetland, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, no. 6, pp. 2282–2289.

    CAS  PubMed  Google Scholar 

  14. 14

    Dedysh, S.N. and Knief, C., Diversity and phylogeny of described aerobic methanotrophs, in Methane Biocatalysis: Paving the Way to Sustainability, Kalyuzhnaya, M. and Xing, X., Eds., Springer, Cham, 2018, pp. 17–42.

    Google Scholar 

  15. 15

    Dedysh, S.N., Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies, Microbiology (Moscow), 2009, vol. 78, pp. 655–669.

    CAS  Google Scholar 

  16. 16

    Deutzmann, J.S., Hoppert, M., and Schink, B., Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov, Syst. Appl. Microbiol., 2014, vol. 37, pp. 165–169.

    CAS  PubMed  Google Scholar 

  17. 17

    Deutzmann, J.S., Wörner, S., and Schink, B., Activity and diversity of methanotrophic bacteria at methane seeps in eastern Lake Constance sediments, Appl. Environ. Microbiol., 2011, vol. 77, pp. 2573–2581.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Gal’chenko, V.F., Metanotrofnye bakterii (Methanotrophic Bacteria), Moscow: GEOS, 2001.

  19. 19

    Ganendra, G., Wang, J., Ramos, J.A., Derluyn, H., Rahier, H., Cnudde, V., Ho, A., and Boon, N., Biogenic concrete protection driven by the formate oxidation by Methylocystis parvus OBBP, Front. Microbiol., 2015, vol. 6, p. 786.

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Grigoryan, A.N. and Gorskaya, L., Ispol’zovanie prirodnogo gaza dlya mikrobiologicheskogo sinteza (Application of Natural Gas for Microbiological Synthesis), Moscow: ONTI Mikrobioprom, 1970.

    Google Scholar 

  21. 21

    Guo, W., Li, D., He, R., Wu, M., Chen, W., Gao, F., Zhang, Z., Yao, Y., Yu, L., and Chen, S., Synthesizing value-added products from methane by a new Methylomonas, J. Appl. Microbiol., 2017, vol. 123, pp. 1214–1227.

    CAS  PubMed  Google Scholar 

  22. 22

    Hanson, R. and Hanson, T., Methanotrophic bacteria, Microbiol. Rev., 1996, vol. 60, pp. 439–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Hirayama, H., Abe, M., Miyazaki, M., Nunoura, T., Furushima, Y., Yamamoto, H., and Takai, K., Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov., Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 989‒999.

    CAS  PubMed  Google Scholar 

  24. 24

    Hoefman, S., van der Ha, D., De Vos, P., Boon, N., and Heylen, K., Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria, Microb. Biotechnol., 2012, vol. 5, pp. 368–378.

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Houghton, K.M. and Stewart, L.C., Temperature-gradient incubation isolates multiple competitive species from a single environmental sample, Access Microbiol., 2020, vol. 2, pp. 1–9.

    CAS  Google Scholar 

  26. 26

    Joergensen, L. and Degn, H., Growth rate and methane affinity of a turbidostatic and oxystatic continuous culture of Methylococcus capsulatus (Bath), Biotechnol. Lett., 1987, vol. 9, pp. 71–76.

    CAS  Google Scholar 

  27. 27

    Kalyuzhnaya, M.G., Kumaresan, D., Heimann, K., Caetano, N.S., Visvanathan, C., and Parthiba Karthikeyan, O., Editorial: methane: a bioresource for fuel and biomolecules, Front. Environ. Sci., 2020, vol. 8, pp. 8–10.

    Google Scholar 

  28. 28

    Khalifa, A., Gyu Lee, C., Ogiso, T., Ueno, C., Dianou, D., Demachi, T., Katayama, A., and Asakawa, S., Methylomagnum ishizawai gen. nov., sp. nov., a mesophilic type I methanotroph isolated from rice rhizosphere, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 3527–3534.

    CAS  PubMed  Google Scholar 

  29. 29

    Khmelenina, V.N., Murrell, J.C., Smith, T.J., and Trotsenko, Y.A., Physiology and biochemistry of the aerobic methanotrophs, in Aerobic Utilization of Hydrocarbons, Oils and Lipids. Handbook of Hydrocarbon and Lipid Microbiology, Rojo, F., Ed., Springer, Cham., 2018, pp. 1–25.

    Google Scholar 

  30. 30

    Kim, J., Kim, D.H.D., and Yoon, S., Rapid isolation of fast-growing methanotrophs from environmental samples using continuous cultivation with gradually increased dilution rates, Appl. Microbiol. Biotechnol., 2018, vol. 102, pp. 5707–5715.

    CAS  PubMed  Google Scholar 

  31. 31

    Knief, C., Diversity and habitat preferences of cultivated and uncultivated methanotrophic bacteria evaluated based on pmoA as molecular marker, Front. Microbiol., 2015, vol. 6, art. 1346.

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Kumaresan, D., Abell, G.C.J., Bodrossy, L., Stralis-Pavese, N., and Murrell, J.C., Spatial and temporal diversity of methanotrophs in a landfill cover soil are differentially related to soil abiotic factors, Environ. Microbiol. Rep., 2009, vol. 1, pp. 398–407.

    CAS  PubMed  Google Scholar 

  33. 33

    Ma, K., Conrad, R., and Lu, Y., Dry/wet cycles change the activity and population dynamics of methanotrophs in rice field soil, Appl. Environ. Microbiol., 2013, vol. 79, pp. 4932–4939.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Morinaga, Y., Yamanaka, S., Otsuka, S.I., and Hirose, Y., Characteristics of a newly isolated methane oxidizing bacterium, Methylomonas flagellata nov. sp., Agric. Biol. Chem., 1976, vol. 40, pp. 1539–1545.

    CAS  Google Scholar 

  35. 35

    Murrell, J.C., The aerobic methane oxidizing bacteria (Methanotrophs) BT, in Handbook of Hydrocarbon and Lipid Microbiology, Timmis, K.N., Ed., Heidelberg: Springer, 2010, pp. 1953–1966.

    Google Scholar 

  36. 36

    Pieja, A.J., Sundstrom, E.R., and Criddle, C.S., Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP, Appl. Environ. Microbiol., 2011, vol. 77, pp. 6012–6019.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Plyasov, Yu.M., Integrated assessment of nutritional value of microbial feed protein, Biotekhnologiya, 1988, vol. 4, no. 3, pp. 402–408.

    Google Scholar 

  38. 38

    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools, Nucleic Acids Res., 2013, vol. 41, pp. 590–596.

    Google Scholar 

  39. 39

    Rahalkar, M., Deutzmann, J., Schink, B., and Bussmann, I., Abundance and activity of methanotrophic bacteria in littoral and profundal sediments of Lake Constance (Germany), Appl. Environ. Microbiol., 2009, vol. 75, pp. 119–126.

    CAS  PubMed  Google Scholar 

  40. 40

    Ritala, A., Häkkinen, S.T., Toivari, M., and Wiebe, M.G., Single cell protein-state-of-the-art, industrial landscape and patents 2001‒2016, Front. Microbiol., 2017, vol. 8, p. 2009.

  41. 41

    Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F., VSEARCH: a versatile open source tool for metagenomics, PeerJ., 2016, vol. 4, e2584.

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Rostkowski, K.H., Pfluger, A.R., and Criddle, C.S., Stoichiometry and kinetics of the PHB-producing type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP, Bioresour. Technol., 2013, vol. 132, pp. 71–77.

    CAS  PubMed  Google Scholar 

  43. 43

    Rumah, B.L., Stead, C.E., Claxton Stevens, B.H., Minton, N.P., Grosse-Honebrink, A., and Zhang, Y., Isolation and characterisation of Methylocystis spp. for poly-3-hydroxybutyrate production using waste methane feedstocks, AMB Express, 2021, vol. 11, art. 6.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Strong, P.J., Kalyuzhnaya, M., Silverman, J., and Clarke, W.P., A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation, Bioresour. Technol., 2016, vol. 215, pp. 314–323.

    CAS  PubMed  Google Scholar 

  45. 45

    Strong, P.J., Xie, S., and Clarke, W.P., Methane as a resource: can the methanotrophs add value?, Environ. Sci. Technol., 2015, vol. 49, pp. 4001–4018.

    CAS  PubMed  Google Scholar 

  46. 46

    Sundstrom, E.R. and Criddle, C.S., Optimization of methanotrophic growth and production of poly(3-hydroxybutyrate) in a high-throughput microbioreactor system, Appl. Environ. Microbiol., 2015, vol. 81, pp. 4767–4773.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Trotsenko, Y.A. and Murrell, J.C., Metabolic aspects of aerobic obligate methanotrophy, Adv. Appl. Microbiol., 2008, vol. 63, pp. 183–229.

    CAS  PubMed  Google Scholar 

  48. 48

    Trotsenko, Y.A., Medvedkova, K.A., Khmelenina, V.N., and Eshinimayev, B.Ts., Thermophilic and thermotolerant aerobic methanotrophs, Microbiology (Moscow), 2009, vol. 78, pp. 387–401.

    CAS  Google Scholar 

  49. 49

    Trotsenko, Yu.A. and Khmelenina, V.N., Ekstremofil’nye metanotrofy (Extremophilic Methanotrophs), Moscow: ONTI PNTs RAN, 2009.

  50. 50

    Vaksmaa, A., van Alen, T.A., Ettwig, K.F., Lupotto, E., Valè, G., Jetten, M.S.M., and Lüke, C., Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil, Front. Microbiol., 2017, vol. 8, pp. 1–15.

    Google Scholar 

  51. 51

    van der Ha, D., Nachtergaele, L., Kerckhof, F.M., Rameiyanti, D., Bossier, P., Verstraete, W., and Boon, N., Conversion of biogas to bioproducts by algae and methane oxidizing bacteria, Environ. Sci. Technol., 2012, vol. 46, pp. 13425–13431.

    CAS  PubMed  Google Scholar 

  52. 52

    Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane D.J., 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, vol. 173, pp. 697–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., and Glöckner, F.O., The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks, Nucleic Acids Res., 2014, vol. 42, pp. 643–648.

    Google Scholar 

Download references


The work was supported by the Russian Federation Ministry of Science and Higher Education.

Author information




SND and NVP proposed the outline of the work. TVM and AIM collected the samples and determined their physicochemical parameters. IYuO and OVD carried out molecular analysis of microbial diversity and isolation and identification of methanotrophic strains. RZS determined the growth characteristics of the isolates. IYuO, NVP, and SND wrote the text of the article. All authors participated in discussion of the results.

Corresponding author

Correspondence to S. N. Dedysh.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oshkin, I.Y., Danilova, O.V., Suleimanov, R.Z. et al. Thermotolerant Methanotrophic Bacteria from Sediments of the River Chernaya, Crimea, and Assessment of Their Growth Characteristics. Microbiology 90, 588–597 (2021).

Download citation


  • thermotolerant methanotrophic bacteria
  • river sediments
  • Methylomonas
  • Methylomagnum
  • Methylocystis
  • growth on methane