Skip to main content
Log in

Probiotic Attributes and Inhibitory Effects of Lactobacillus plantarum MYS84 against the Growth and Biofilm Formation of Pseudomonas aeruginosa

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Manufacture of fermented foods/products, which, apart from basic nutrition, have health-promoting effects, is flourishing. Within the field of fermented foods, rapidly expanding is the area of probiotics. Probiotic bacteria are gaining growing attention in the last two decades as a result of the constantly increasing scientific evidence of their beneficial effects on human health. In the current study, the isolate Lactobacillus plantarum MYS84 was identified by morphological, biochemical, physiological, and genetic methods. The standard in vitro techniques revealed that the isolated strain possessed good probiotic attributes. The cell-free supernatant (CFS) was active against Pseudomonas aeruginosa MTCC 7903, probably due to its proteinaceous nature, and it retained activity after treatment with catalase, lysozyme, and papain. It was also heat-resistant and acid-stable. Moreover, the CFS exhibited strong biofilm inhibition (78%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Amin, R.A., Effect of biopreservation as a modern technology on quality aspects and microbial safety of minced beef, Global J. Biotechnol. Biochem., 2012, vol. 7, pp. 38–49.

    CAS  Google Scholar 

  2. Anju, K.M., Archana, M.M., Mohandas, C., and Nambisan, B., Purification and identification of an antibacterial protein from the symbiotic bacteria associated with novel entomopathogenic nematode, Rhabditis (Oscheius) sp., World J. Microbiol. Biotechnol., 2015, vol. 31, pp. 621–632.

    Article  CAS  PubMed  Google Scholar 

  3. Argyri, A.A., Zoumpopoulou, G., Karatzas, K.A.G., Tsakalidou, E., Nychas, G.J.E., Panagou, E.Z., and Tassou, C.C., Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests, Food Microbiol., 2013, vol. 33, pp. 282–291.

    Article  CAS  PubMed  Google Scholar 

  4. Barbosa, M.S., Todorov, S.D., Ivanova, I.V., Belguesmia, Y., Choiset, Y., Rabesona, H., and Franco, B.D.G.D.M., Characterization of a two-peptide plantaricin produced by Lactobacillus plantarum MBSa4 isolated from Brazilian salami, Food Control, 2016, vol. 60, pp. 103–112.

    Article  CAS  Google Scholar 

  5. Barnes, L.M., Lo, M.F., Adams, M.R., and Chamberlain, A.H., Effect of milk proteins on adhesion of bacteria to stainless steel surfaces. Appl. Environ. Microbiol., 1999, vol. 65, pp. 4543–4548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Batdorj, B., Dalgalarrondo, M., Choiset, Y., Pedroche, J., Metro, F., Prevost, H., and Haertlé., T., Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag, J. Appl. Microbiol., 2006, vol. 101, pp. 837–848.

    Article  CAS  PubMed  Google Scholar 

  7. Ben Slama, R., Kouidhi, B., Zmantar, T., Chaieb, K., Bakhrouf, A., Anti-listerial and anti-biofilm activities of potential probiotic Lactobacillus strains isolated from Tunisian traditional fermented food, J. Food Safety, 2013, vol. 33, pp. 8–16.

    Article  CAS  Google Scholar 

  8. Bjarnsholt, T., The role of bacterial biofilms in chronic infections, APMIS Suppl., 2013, vol. 136, pp. 1–51.

    Article  CAS  Google Scholar 

  9. Cappuccino, J.G. and Sherman, N., Microbiology: A Laboratory Manual, Singapore: Pearson Education, 2004.

    Google Scholar 

  10. Cegelski, L., Marshall, G., Eldridge, G.R., and Hultgren, S., The biology and future prospects of antivirulence therapies. Nature Rev. Microbiol., 2008, vol. 6, pp. 17–27.

    Article  CAS  Google Scholar 

  11. Charteris, W.P., Kelly, P.M., Morelli, L., and Collins, J.K., Antibiotic susceptibility of potentially probiotic Lactobacillus species, J. Food Protect., 1998, vol. 61, pp. 16361643.

  12. Chen, H., Temperature-assisted pressure inactivation of Listeria monocytogenes in turkey breast meat, Int. J. Food Microbiol., 2007, vol. 117, pp. 55–60.

    Article  CAS  PubMed  Google Scholar 

  13. Cortes-Zavaleta, O., López-Malo, A., Hernandez-Mendoza, A., and Garcia, H.S., Antifungal activity of Lactobacilli and its relationship with 3-phenyllactic acid production, Int. J. Food Microbiol., 2014, vol. 173, pp. 30–35.

    Article  CAS  PubMed  Google Scholar 

  14. Cotter, P.D., Hill, C., and Ross, R.P., Bacteriocins: developing innate immunity for food, Nature Rev. Microbiol., 2005, vol. 3, pp. 777–788.

    Article  CAS  Google Scholar 

  15. Deepthi, B.V., Somashekaraiah, R., Poornachandra Rao K., Deepa, N., Dharanesha, N.K., Girish, K., and Sreenivasa, M.Y., Lactobacillus plantarum MYS6 ameliorates fumonisin B1-induced hepatorenal damage in broilers, Front Microbial., 2017, vol. 8, p. 2317.

    Article  CAS  Google Scholar 

  16. Ge, J., Sun, Y., Xin, X., Wang, Y., and Ping, W., Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice, Sci. Rep., 2016, 6, 19366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghafoor, A., Hay, I.D., and Rehm, B.H., Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture, Appl. Environ. Microbiol., 2011, vol. 15, pp. 5238–5246.

    Article  CAS  Google Scholar 

  18. Gloag, E.S., Turnbull, L., Huang, A., Vallotton, P., Wang, H., Nolan, L.M., Mililli, L., Hunt, C., Lu, J. Osvath, S.R., Monahan, L.G., Cavaliere, R., Charles, I.G., Wand, M.P., Gee M.L., et al., Self-organization of bacterial biofilms is facilitated by extracellular DNA, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 11541–11546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jaffar, N., Ishikawa, Y., Mizuno, K., Okinaga, T., and Maeda, T., Mature biofilm degradation by potential probiotics: Aggregatibacter actinomycetemcomitans versus Lactobacillus spp., PLoS One, 2016, vol. 11, no. 7, p. e0159466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Joint FAO, WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada, 2002.

    Google Scholar 

  21. Kalyaraung, S., Viernstein, H., Sirithunyalug, J., and Okonogi, S., Probiotic properties of Lactobacilli isolated from thai traditional food, Sci. Pharm., 2008, vol. 76, pp. 485–503.

    Article  CAS  Google Scholar 

  22. Kraft, A.A., Psychotropic Bacteria in Foods: Disease and Spoilage, Boca Raton: CRC, 1992.

    Book  Google Scholar 

  23. Kumar, S., Bansal, A., Chakrabarti, A., and Singhi, S., Evaluation of efficacy of probiotics in prevention of Candida colonization in a PICU-a randomized controlled trial, Crit. Care Med., 2013, vol. 41, pp. 565–572.

    Article  PubMed  Google Scholar 

  24. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  25. Lalitha, M.K., Manual on antimicrobial susceptibility testing. performance standards for antimicrobial testing, Twelfth Informational Supplement., 2004, vol. 56238, pp. 454–456.

    Google Scholar 

  26. Liu, M., Lu, J., Muller, P., Turnbull, L., Burke, C.M., Schlothauer, R.C., Carter, D.A., Whitchurch, C.B., and Harry, E.J., Antibiotic-specific differences in the response of Staphylococcus aureus to treatment with antimicrobials combined with manuka honey, Front. Microbiol., 2015, vol. 2014, p. 5.

    Google Scholar 

  27. Lopez, N., Puertolas, E., Condon, S., Alvarez, I., and Raso, J., Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes, Innov. Food Sci. Emerg. Technol., 2008, vol. 9, pp. 477–482.

    Article  CAS  Google Scholar 

  28. Ma, L., Wang, J., Wang, S., Anderson, E.M., Lam, J.S., Parsek, M.R., and Wozniak, D.J., Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post transcriptionally regulated, Environ. Microbiol., 2012, vol. 14, no. 8, pp. 1995–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mahdhi, A., Leban, N., Chakroun, I., Bayar, S., Mahdouani, K., Majdoub, H., and Kouidhi, B., Use of extracellular polysaccharides, secreted by Lactobacillus plantarum and Bacillus spp., as reducing indole production agents to control biofilm formation and efflux pumps inhibitor in Escherichia coli, Microb. Pathog., 2018, vol. 125, pp. 448–453.

    Article  CAS  PubMed  Google Scholar 

  30. Marianelli, C., Cifani, N., and Pasquali, P., Evaluation of antimicrobial activity of probiotic bacteria against Salmonella enterica subsp. enterica serovar typhimurium 1344 in a common medium under different environmental conditions, Res. Microbiol., 2010, vol. 161, pp. 673–680.

    Article  PubMed  Google Scholar 

  31. Meliani, A. and Bensoltane, A., Review of Pseudomonas attachment and biofilm formation in food industry, Poult. Fish Wildl Sci., 2015, vol. 3, p. 126.

    Google Scholar 

  32. Nagpal, R., Kumar, A., Kumar, M., Behare, P.V., Jain, S., and Yadav, H., Probiotics, their health benefits and applications for developing healthier foods: a review, FEMS Microbiol .Lett., 2012, vol. 334, pp. 1–15.

    Article  CAS  PubMed  Google Scholar 

  33. Neal-McKinney, J.M., Lu, X., Duong, T., Larson, C.L., Call, D.R., Shah, D.H., and Konkel, M.E., Production of organic acids by probiotic Lactobacilli can be used to reduce pathogen load in poultry, PLoS One, 2012, vol. 7, p. e43928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Onbas, T., Osmanagaoglu, O., and Kiran, F., Potential properties of Lactobacillus plantarum F-10 as a bio-control strategy for wound infections, Probiotics Antimicrob. Proteins, 2018, vol. 11, pp. 1110–1123.

    Article  CAS  Google Scholar 

  35. Percival, S.L., Suleman, L., Vuotto, C., and Donelli, G., Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control, J. Med. Microbiol., 2015, vol. 64, pp. 323–334.

    Article  PubMed  Google Scholar 

  36. Rao, K.P., Chennappa, G., Suraj, U., Nagaraja, H., Raj, A.C., and Sreenivasa, M.Y., Probiotic potential of Lactobacillus strains isolated from sorghum-based traditional fermented food, Probiotics Antimicrob. Proteins., 2015, vol. 7, pp. 146–156.

    Article  PubMed  CAS  Google Scholar 

  37. Rao, K.P., Hemanth Kumar, N.K., and Sreenivasa, M.Y., Therapeutic potential of probiotic Lactobacillus plantarum MYS94 against Campylobacter jejuni, Int. J. Curr. Microbiol. App. Sci., 2016, vol. 5, pp. 869–883.

    Article  CAS  Google Scholar 

  38. Rao, K.P., Kumar, N.K., and Sreenivasa, M.Y., Characterization of probiotic Lactobacillus plantarum MYS14 isolated from Sannas, a traditional fermented food for its therapeutic potential, Curr. Nutr. Food Sci., 2017, vol. 13, pp. 110–120.

    Article  CAS  Google Scholar 

  39. Rojo-Bezares, B., Saenz, Y., Navarro, L., Zarazaga, M., Ruiz-Larrea, F., and Torres, C., Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must, Food Microbiol., 2007, vol. 24, pp. 482–491.

    Article  CAS  PubMed  Google Scholar 

  40. Rossoni, R.D., Velloso, M.D.S., de Barros, P.P., de Alvarenga, J. A., dos Santos, J.D., dos Santos Prado, A.C.C., de Camargo Ribeiro, F., Lia, A.A., and Junqueira, J.C., Inhibitory effect of probiotic Lactobacillus supernatants from the oral cavity on Streptococcus mutans biofilms, Microb. Pathog., 2018, vol. 123, pp. 361–367.

    Article  PubMed  Google Scholar 

  41. Russotto, V., Cortegiani, A., Raineri, S.M., and Giarratano, A., Bacterial contamination of inanimate surfaces and equipment in the intensive care unit, J. Intensive Care, 2015, vol. 3, p. 54.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sahadeva, R.P.K., Leong, S.F., Chua, K.H., Tan, C.H., Chan, H.Y., Tong, E.V., Wong, S.Y., and Chan, H.K., Survival of commercial probiotic strains to pH and bile, Int. Food Res. J., 2011, vol. 18, pp. 1515–1522.

    Google Scholar 

  43. Sharma, V., Harjai, K., and Shukla, G., Effect of bacteriocin and exopoly- saccharides isolated from probiotic on P. aeruginosa PAO1 biofilm, Folia Microbiol. (Praha), 2018, vol. 63, pp. 181–190.

    Article  CAS  Google Scholar 

  44. Sure, K.P., Kotnis, P.V., Bhagwat, P.K., Ranveer, R.C., Dandge, P.B., and Sahoo, A.K., Production and characterization of bacteriocin produced by Lactobacillus viridescence (NICM 2167), Brazilian Arch. Biol. Technol., 2016, vol. 59.

  45. Sutherland, I.W., The biofilm matrix an immobilized but dynamic microbial environment, Trends Microbiol., 2011, vol. 9, no. 5, pp. 222–227.

    Article  Google Scholar 

  46. Tan, Y., Leonhard, M., Moser, D., and Schneider-Stickler, B., Inhibition activity of Lactobacilli supernatant against fungal-bacterial multispecies bio- films on silicone, Microb. Pathog., 2017, vol. 113, pp. 197–201.

    Article  Google Scholar 

  47. Turchi, B., Mancni, S., Fratini, F., Pedonese, F., Nuvoloni, R., Bertelloni, F., Ebani, V.V., and Cerri, D., Preliminary evaluation of probiotic potential of Lactobacillus plantarum strains isolated from Italian food products, World J. Microbiol. Biotechnol., 2013, vol. 29, pp. 1913–1922.

    Article  PubMed  Google Scholar 

  48. US Food and Drug Administration, Draft Guidance for Industry: Hazard Analysis and Risk-Based Preventive Controls for Human Food, 2016.

  49. Zhu, X., Zhao, Y., Sun, Y., and Gu, Q., Purification and characterization of plantaricin ZJ008, a novel bacteriocin against Staphylococcus spp. from Lactobacillus plantarum ZJ008, Food Chem., 2014, vol. 165, pp. 216–223.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Sreenivasa.

Ethics declarations

The authors declare that there is no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao K, P., Kumar N, H., Somashekaraiah, R. et al. Probiotic Attributes and Inhibitory Effects of Lactobacillus plantarum MYS84 against the Growth and Biofilm Formation of Pseudomonas aeruginosa . Microbiology 90, 361–369 (2021). https://doi.org/10.1134/S0026261721030103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721030103

Keywords:

Navigation