Skip to main content
Log in

Phenotypic Heterogeneity in Biofilm Consortia of E. coli

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

In this study, a total of seventeen (17) waterborne, biofilm-producing isolates of Escherichia coli were used. The population analysis showed that biofilm consortia harbour three different phenotypes e.g. smooth surface phenotypes (SSP), rough surface phenotypes (RSP) and small colony variants (SCVs). The SSP was hydrophilic and the initiator of biofilm formation processes in response to environmental stress. The RSP exhibited hydrophobic properties and occupy the core of biofilm consortia. They were slow-growing and produced a high quantity of exopolysaccharides as compared to SSP and SCVs. The highly adhesive and hydrophobic SCVs appeared after 48 h of incubation and occupy the lower base of biofilm consortia. They were metabolically inactive and difficult to disperse after adhesion. Our experiments show that all the subject isolates of E. coli carry wcaF and flu gene. Besides, the comparative analysis showed that wcaF and flu gene expression was high in RSP. These phenotypes activate wcaF and flu genes to produce extracellular matrix material to persist in biofilm consortium. Comparative analysis showed the biofilm formation was initiated by SSP while the RSP and SCVs was a product of a cruel environment and has a major role in the stability and persistence of consortia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Allegrucci, M. and Sauer K., Characterization of colony morphology variants isolated from Streptococcus pneumonia biofilm, J. Bacteriol., 2007, vol. 189, no. 5, pp. 2030–2038. https://doi.org/10.1128/JB.01369-06

    Article  CAS  PubMed  Google Scholar 

  2. Brooks, A.N., Turkarslan, S., Beer, K.D., Lo, F.Y., and Baliga, N.S., Adaptation of cells to new environments, Wiley Interdiscip. Rev. Sys. Biol. Med., 2011, vol. 3, no. 5, pp. 544–561. https://doi.org/10.1002/wsbm.136

    Article  CAS  Google Scholar 

  3. Chen, C.Y., Nace, G.W., and Irwin, P.L., A 6 × 6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli, J Microbiol. Methods, 2003, vol. 55, no. 2, pp. 475–479. https://doi.org/10.1016/S0167-7012(03)00194-5

    Article  CAS  PubMed  Google Scholar 

  4. Colwell, C.A., Small colony variants of Escherichia coli, J. Bacteriol., 1946, vol. 52, pp. 417–422.

    Article  CAS  Google Scholar 

  5. Davey, M.E., and O’toole, G.A., Microbial biofilms: from ecology to molecular genetics, Microbiol. Mol Biol. Rev., 2000, vol. 64, no. 4, pp. 847–867. https://doi.org/10.1128/MMBR.64.4.847-867.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Déziel, E., Comeau, Y., and Villemur, R., Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities, J. Bacteriol., 2001, vol. 183, no. 4, pp. 1195–1204 https://doi.org/10.1128/JB.183.4.1195-1204.2001

    Article  PubMed  PubMed Central  Google Scholar 

  7. Häußler, S., Ziegler, I., Löttel, A., Götz, F.V., Rohde, M., Wehmhöhner, D., Saravanamuthu, S., Tümmler, B., and Steinmetz, I., Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection, J. Med. Microbiol., 2003, vol. 52, no. 4, pp. 295−301. https://doi.org/10.1099/jmm.0.05069-0

    Article  Google Scholar 

  8. Hutchison, J., Kaushik, K., Rodesney, C., Lilieholm, T., Bakhtiari, L., and Gordon, V.D., Increased production of the extracellular polysaccharide Psl can give a growth advantage to Pseudomonas aeruginosa in low-iron conditions, BioRxiv, 2018, p. 355339. https://doi.org/10.1101/355339

  9. Ito, A., May, T., Kawata, K., and Okabe S., Significance of rpoS during maturation of Escherichia coli biofilms, Biotechnol. Bioeng., 2008, vol. 99, no. 6, pp. 1462–1471. https://doi.org/10.1002/bit.21695

    Article  CAS  PubMed  Google Scholar 

  10. Jacobsen, S.M., Stickler, D.J., Mobley, H.L., and Shirtliff, M.E., Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis, Clin. Microbiol. Rev., 2008, vol. 21, no. 1, pp. 26–59. https://doi.org/10.1128/CMR.00019-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johns, B.E., Purdy, K.J., Tucker, N.P., and Maddocks, S.E., Phenotypic and genotypic characteristics of small colony variants and their role in chronic infection, Microbiol. Insights, 2015, vol. 8, p. MBI-S25800. https://doi.org/10.4137/MBI.S25800.

  12. Kamada, N., Chen, G.Y., Inohara, N., and Nunez, G., Control of pathogens and pathobionts by the gut microbiota, Nat. Immunol., 2013, vol. 14, no. 4, pp. 685–690. https://doi.org/10.1038/ni.2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keren, I., Kaldalu, N., Spoering, A., Wang, Y., and Lewis, K., Persister cells and tolerance to antimicrobials, FEMS Microbiol. Lett., 2004, vol. 230, no. 1, pp. 13–18. https://doi.org/10.1016/S0378-1097(03)00856-5

    Article  CAS  PubMed  Google Scholar 

  14. Khelissa, S.O., Abdallah, M., Jama, C., Faille, C., and Chihib, N.E., Bacterial contamination and biofilm formation on abiotic surfaces and strategies to overcome their persistence, J. Mater. Environ. Sci., 2017, vol. 8, pp. 3326–3346.

    CAS  Google Scholar 

  15. Kouidhi, B., Zmantar, T., Hentati, H., and Bakhrouf, A., Cell surface hydrophobicity, biofilm formation, adhesives properties and molecular detection of adhesins genes in Staphylococcus aureus associated to dental caries, Microb. Pathog., 2010, vol. 49, nos. 1−2, pp. 14–22. https://doi.org/10.1016/j.micpath.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  16. Krasowska, A. and Sigler, K., How microorganisms use hydrophobicity and what does this mean for human needs?, Front Cell Infect. Microbiol., 2014, vol. 4, p. 112. https://doi.org/10.3389/fcimb.2014.00112

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee, J.H., Kim, Y.G., Gwon, G., Wood, T.K., and Lee, J., Halogenated indoles eradicate bacterial persister cells and biofilms, AMB Express, 2016, vol. 6, no. 1, p. 123. https://doi.org/10.1186/s13568-016-0297-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luidalepp, H., Jõers, A., Kaldalu, N., and Tenson T., Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence, J. Bacteriol., 2011, vol. 193, no. 14, pp. 3598–3605.https://doi.org/10.1128/JB.00085-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marti, R., Schmid, M., Kulli, S., Schneeberger, K., Naskova, J., Knøchel, S., Ahrens, C.H., and Hummerjohann, J., Biofilm formation potential of heat resistant Escherichia coli dairy isolates and complete genome of MDR heat resistant strain FAM21845, Appl. Environ. Microbiol., 2017, vol. 83, no. 15, p. e00628-17.https://doi.org/10.1128/AEM.00628-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Melter, O. and Radojevic, B., Small colony variants of Staphylococcus aureus, Folia Microbiol., 2010, vol. 55, no. 6, pp. 548–558. https://doi.org/10.1007/s12223-010-0089-3

    Article  CAS  Google Scholar 

  21. Mirani, Z.A., Aziz, M., Khan, M.N., Lal, I., Hassan, N.U., and Khan S.I., Biofilm formation and dispersal of Staphylococcus aureus under the influence of oxacillin, Microb. Pathog., 2013, vol. 61, pp. 66–72. https://doi.org/10.1016/j.micpath.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  22. Mirani, Z.A., Fatima, A., Urooj, S., Aziz, M., Khan, M.N., and Abbas, T., Relationship of cell surface hydrophobicity with biofilm formation and growth rate: a study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, Iran J. Basic Med. Sci., 2018, vol. 21, no. 7, pp. 760–769. https://doi.org/10.22038/IJBMS.2018.28525.6917

    Article  PubMed  PubMed Central  Google Scholar 

  23. Muyzer, G., De Waal, E.C., and Uitterlinden, A.G., Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ. Microbiol., 1993, vol. 59, no. 3, pp. 695–700.

    Article  CAS  Google Scholar 

  24. Nicolas-Chanoine, M.H., Bertrand, X., and Madec, J.Y., Escherichia coli ST131, an intriguing clonal group, Clin. Microbiol. Rev., 2104, vol. 27, pp. 543–574. https://doi.org/10.1128/CMR.00125-13

  25. Orazi, G. and O’toole, G.A., Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection, MBio, 2017, vol. 8, no. 4, p. e00873-17. https://doi.org/10.1128/mBio.00873-17

    Article  PubMed  PubMed Central  Google Scholar 

  26. O’Toole, G.A. and Kolter, R., Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol. Microbiol., 1998, vol. 28, no. 3, pp. 449–461. https://doi.org/10.1046/j.1365-2958.1998.00797.x

    Article  PubMed  Google Scholar 

  27. Petrova, O.E. and Sauer K., Escaping the biofilm in more than one way: desorption, detachment or dispersion, Curr. Opin. Microbiol., 2016, vol. 30, pp. 67–78. https://doi.org/10.1016/j.mib.2016.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qin, Z., Yang, Y., Qu, D., Molin, S., and Tolker-Nielsen, T., Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis, Microbiology (UK), 2009, vol. 155, pp. 2148–2156. https://doi.org/10.1099/mic.0.028001-0

    Article  CAS  PubMed  Google Scholar 

  29. Schembri, M.A., Hjerrild, L., Gjermansen, M., and Klemm, P., Differential expression of the Escherichia coli autoaggregation factor antigen 43, J. Bacteriol., 2003, vol. 185, no. 7, pp. 2236–2242. https://doi.org/10.1128/JB.185.7.2236-2242.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schiebel, J., Bohme, A., Nitschke, J., Burdukiewicz, M., Weinreich, J., Ali A., Roggenbuck, D., Rödiger, S., and Schierack, P., Genotypic and phenotypic characteristics associated with biofilm formation by human clinical Escherichia coli isolates of different pathotypes, Appl. Environ. Microbiol., 2017, vol. 83, no. 24, p. e01660-17. https://doi.org/10.1128/AEM .01660-17

  31. Serra, D.O., Richter, A.M., and Hengge, R., Cellulose as an architectural element in spatially structured Escherichia coli biofilms, J. Bacteriol., 2013, vol. 195, no. 24, pp. 5540–5554. https://doi.org/10.1128/JB.00946-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shewaramani, S., Finn, T.J., Leahy, S.C., Kassen, R., Rainey, P.B., and Moon, C.D., Anaerobically grown Escherichia coli has an enhanced mutation rate and distinct mutational spectra, PLoS Genet., 2017, vol. 13, no. 1, p. e1006570. pmid:28103245. https://doi.org/10.1371/journal.pgen.1006570

  33. Singh, R., Ray, P., Das, A., and Sharma, M., Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study, J. Med. Microbiol., 2009, vol. 58, no. 8, pp. 1067–1073. https://doi.org/10.1099/jmm.0.009720-0

    Article  CAS  PubMed  Google Scholar 

  34. Solano, C., Garcia, B., Valle, J., Berasain, C., Ghigo, J.M., Gamazo, C., and Lasa, I., Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose, Mol. Microbiol., 2002, vol. 43, no. 3, pp. 793–808. https://doi.org/10.1046/j.1365-2958.2002.02802.x

    Article  CAS  PubMed  Google Scholar 

  35. Steenackers, H.P., Parijs, I., Foster, K.R., and Vanderleyden J., Experimental evolution in biofilm populations, FEMS Microbiol. Rev., 2016, vol. 40, no. 3, pp. 373–397. https://doi.org/10.1093/femsre/fuw002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stewart, P.S., and Franklin, M.J., Physiological heterogeneity in biofilms, Nat. Rev. Microbiol. 2008, vol. 6, no. 3, pp. 199–210. https://doi.org/10.1038/nrmicro1838

    Article  CAS  PubMed  Google Scholar 

  37. Tashiro, Y., Eida, H., Ishii, S., Futamata, H., and Okabe, S., Generation of small colony variants in biofilms by Escherichia coli harboring a conjugative F plasmid, Microbes Environ. 2017, pp. 40–46. https://doi.org/10.1264/jsme2.ME16121

  38. Uhlich, G.A., Cook, P.H., and Solomon, E.B., Analyses of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents, Appl. Environ. Microbiol., 2006, vol. 72, no. 4, pp. 2564–2572. https://doi.org/10.1128/AEM.72.4.2564-2572.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ulett, G.C., Valle, J., Beloin, C., Sherlock, O., Ghigo, J.M., and Schembri, M.A., Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long term persistence in the urinary tract, Infect. Immun., 2007, vol. 75, pp. 3233–3244. https://doi.org/10.1128/IAI.01952-06

    Book  Google Scholar 

  40. Van Meervenne, E., De Weirdt, R., Van Coillie, E., Devlieghere F., Herman, L., and Boon, N., Biofilm models for the food industry: hot spots for plasmid transfer?, Pathog. Dis., 2014, vol. 70, no. 3, pp. 332–338. https://doi.org/10.1111/2049-632X.12134

    Article  CAS  Google Scholar 

  41. Vila, J., Sáez-López, E., Johnson, J.R., Römling, U., Dobrindt, U., Cantón, R., Giske, C.G., Naas, T., Carattoli, A., Martínez-Medina, M., and Bosch, J., Escherichia coli: an old friend with new tidings. FEMS Microbiol. Rev., 2016, vol. 40, pp. 437–463. https://doi.org/10.1093/femsre/fuw005

    Article  CAS  PubMed  Google Scholar 

  42. Vlamakis, H., Aguilar, C., Losick, R., and Kolter, R., Control of cell fate by the formation of an architecturally complex bacterial community, Gene Dev., 2008, vol. 22, no. 7, pp. 945–953. https://doi.org/10.1101/gad.1645008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Walker, S.L., Redman, J.A., and Elimelech, M., Role of cell surface lipopolysaccharides in Escherichia coli K12 adhesion and transport, Langmuir, 2004, vol. 20, no. 18, pp. 7736–7746. https://doi.org/10.1021/la049511f

    Article  CAS  PubMed  Google Scholar 

  44. Yang, S.C., Lin, C.H., Aljuffali, I.A., and Fang, J.Y., Current pathogenic Escherichia coli foodborne outbreak cases and therapy development, Arch Microbiol., 2017, vol. 199, no. 6, pp. 811–825. https://doi.org/10.1007/s00203-017-1393-y

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, J. and Poh, C.L., Regulating exopolysaccharide gene wcaF allows control of Escherichia coli biofilm formation, Sci. Rep., 2018, vol. 8, no. 1, pp. 1–11. https://doi.org/10.1038/s41598-018-31161-7

    Article  CAS  Google Scholar 

  46. Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W., and Römling, U., The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix, Mol. Microbiol., 2001, vol. 39, no. 6, pp. 1452–1463. https://doi.org/10.1046/j.1365-2958.2001.02337.x

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to Mr. Yousf Khan, Laboratory Engineer, Central Research Laboratory, University of Karachi, for providing Scanning Electron Microscopy and RT-PCR facilities. We are also thankful to Molecular Laboratory of DOW University of Heath Science Karachi for providing technical support RT-PCR for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Mirani.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirani, Z.A., Urooj, S., Ullah, A. et al. Phenotypic Heterogeneity in Biofilm Consortia of E. coli . Microbiology 90, 237–246 (2021). https://doi.org/10.1134/S0026261721020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721020089

Keywords:

Navigation