Skip to main content
Log in

Age-Related Changes in the Yeast Component of the Drosophila melanogaster Microbiome

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Drosophila melanogaster fruit flies are an important model for studying the multifaceted interactions between a multicellular organism and its microbiome. The nature of these interactions is largely determined by the regular changes in abundance and composition of the microbiome that occur during the host’s life. The currently available data on age- and life cycle stage-related changes in the Drosophila microbiome relate mainly to its bacterial component, while little is known about such changes in the equally important yeast component. The present work describes the quantitative and qualitative composition of the yeast component of the D. melanogaster microbiome in three laboratory lines, reared under different conditions, at four developmental stages: late larvae and adults aged 1, 7, and 14 days after eclosion. In all three lines, the total yeast abundance changed similarly with the age of insects, with the highest and lowest yeast counts in 7- and 1-day adults, respectively. In the fly lines reared on moderately unfavorable substrates supplemented with 2 and 4% NaCl, the abundance and species diversity of yeasts at all four developmental stages was higher than in the flies reared on a standard (favorable) food substrate. Our results indicate the inconstancy of the yeast component of the D. melanogaster microbiome and its regular changes with the insect’s age, which must be taken into account when studying the relationships between symbiotic yeasts and their hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Anagnostou, C., Dorsch, M., and Rohlfs, M., Influence of dietary yeasts on Drosophila melanogaster life-history traits, Entomol. Exp. Appl., 2010, vol. 136, pp. 1–11.

    Google Scholar 

  2. Becher, P.G., Flick, G., Rozpędowska, E., Schmidt, A., Hagman, A., Lebreton, S., Larsson, M.C., Hansson, B.S., Piškur, J., and Bengtsson, M., Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development, Function. Ecol., 2012, vol. 26, pp. 822‒828.

    Google Scholar 

  3. Belkina, E.G., Naimark, E.B., Gorshkova, A.A., and Markov, A.V., Does adaptation to different diets result in assortative mating? Ambiguous results from experiments on Drosophila, J. Evolution Biol., 2018, vol. 31, pp. 1803–1814.

    CAS  Google Scholar 

  4. Bordenstein, S.R. and Theis, K.R., Host biology in light of the microbiota: ten principles of holobionts and hologenomes, PLoS Biol., 2015, vol. 13, e1002226.

    PubMed  PubMed Central  Google Scholar 

  5. Broderick, N.A. and Lemaitre, B., Gut-associated microbes of Drosophila melanogaster, Gut Microbes, 2012, vol. 3, pp. 307–321.

    PubMed  PubMed Central  Google Scholar 

  6. Brummel, T., Ching, A., Seroude, L., Simon, A.F., and Benzer, S., Drosophila lifespan enhancement by exogenous bacteria, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 12974–12979.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chandler, J.A., Eisen, J.A., and Kopp, A., Yeast communities of diverse Drosophila species: comparison of two symbiont groups in the same hosts, Appl. Environ. Microbiol., 2012, vol. 78, pp. 7327–7336.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chandler, J.A., Lang, J.M., Bhatnagar, S., Eisen, J.A., and Kopp, A., Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system, PLoS Genet., 2011, vol. 7, p. e1002272.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Choińska, R., Piasecka-Jóźwiak, K., Chabłowska, B., Dumka, J., and Łukaszewicz, A., Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains, Antonie van Leeuwenhoek, 2020, vol. 113, pp. 1135–1146.

    PubMed  PubMed Central  Google Scholar 

  10. Clark, R.I., Salazar, A., Yamada, R., Fitz-Gibbon, S., Morselli, M., Alcaraz, J., Rana, A., Rera, M., Pellegrini, M., Ja, W.W., and Walker, D.W., Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality, Cell Reports, 2015, vol. 12, pp. 1656–1667.

    CAS  PubMed  Google Scholar 

  11. Coluccio, A.E., Rodriguez, R.K., Kernan, M.J., and Neiman, A.M., The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila, PLoS One, 2008, vol. 3, e2873.

    PubMed  PubMed Central  Google Scholar 

  12. Dmitrieva, A.S., Ivnitsky, S.B., and Markov, A.V., Adaptation of Drosophila melanogaster to unfavorable feed substrate is accompanied by expansion of trophic niche, Biology Bull. Rev., 2017, vol. 7, pp. 369–379.

    Google Scholar 

  13. Dmitrieva, A.S., Ivnitsky, S.B., Maksimova, I.A., Panchenko, P.L., Kachalkin, A.V., and Markov, A.V., Symbiotic yeasts affect adaptation of Drosophila melanogaster to food substrate with high NaCl concentration, PLoS One, 2019, vol. 14. e0224811.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Douglas, A.E., The Drosophila model for microbiome research, Lab. Animal., 2018, vol. 47, pp. 157–164.

    PubMed  PubMed Central  Google Scholar 

  15. Erkosar, B. and Leulier, F., Transient adult microbiota, gut homeostasis and longevity: novel insights from the Drosophila model, FEBS Lett., 2014, vol. 588, pp. 4250–4257.

    CAS  PubMed  Google Scholar 

  16. Erkosar, B., Storelli, G., Defaye, A., and Leulier, F., Host-intestinal microbiota mutualism: “learning on the fly,” Cell Host Microbe., 2013, vol. 13, pp. 8–14.

    CAS  PubMed  Google Scholar 

  17. Glushakova, A.M. and Kachalkin, A.V., Endophytic yeasts in Malus domestica and Pyrus communis fruits under anthropogenic impact, Microbiology (Moscow), 2017, vol. 86, pp. 128‒135.

    CAS  Google Scholar 

  18. Guilhot, R., Rombaut, A., Xuéreb, A., Howell, K., and Fellous, S., Bacterial influence on the maintenance of symbiotic yeast through Drosophila metamorphosis, bioRxiv, preprint posted June 1, 2020. https://doi.org/10.1101/2020.05.31.126185

  19. Günther, C.S. and Goddard, M.R., Do yeasts and Drosophila interact just by chance?, Fungal Ecol., 2019, vol. 38, pp. 37‒43.

    Google Scholar 

  20. Hoang, D., Kopp, A., and Chandler, J.A., Interactions between Drosophila and its natural yeast symbionts—Is Saccharomyces cerevisiae a good model for studying the fly‒yeast relationship?, Peer J., 2015, vol. 3, e1116.

    PubMed  PubMed Central  Google Scholar 

  21. Ivnitsky, S.B., Maximova, I.A., Panchenko, P.L., Dmitrieva, A.S., Kachalkin, A.V., Kornilova, M.B., Perfilieva, K.S., and Markov, A.V., Microbiome affects the adaptation of Drosophila melanogaster to a high NaCl concentration, Biology Bull. Rev., 2019, vol. 9, pp. 465–474.

    Google Scholar 

  22. The Yeasts, A Taxonomic Study, Kurtzman, C.P., Fell, J.W. and Boekhout, T., Eds., Elsevier, 2011, 5th ed.

  23. Margulis, L. and Fester, R., Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis, Boston: MIT, 1991.

    Google Scholar 

  24. Markov, A.V. and Ivnitsky, S.B., Evolutionary role of phenotypic plasticity, Mos. Univ. Biol. Sci. Bull., 2016, vol. 71. № 4, pp. 185–192.

    Google Scholar 

  25. Markov, A.V., Ivnitsky, S.B., Kornilova, M.B., Naimark, E.B., Shirokova, N.G., and Perfilieva, K.S., Maternal effect obscures adaptation to adverse environments and hinders divergence in Drosophila melanogaster, Biology Bull. Rev., 2016, vol. 6, pp. 429–435.

    Google Scholar 

  26. McFall-Ngai, M.J., Unseen forces: the influence of bacteria on animal development, Dev. Biol., 2002, vol. 242, pp. 1–14.

    CAS  PubMed  Google Scholar 

  27. Moran, N.A. and Sloan, D.B., The hologenome concept: helpful or hollow?, PLoS Biol., 2015, vol. 13, e1002311.

    PubMed  PubMed Central  Google Scholar 

  28. Newell, P.D., Chaston, J.M., Wang, Y., Winans, N.J., Sannino, D.R., Wong, A.C.-N., Dobson, A.J., Kagle, J., and Douglas, A.E., In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors, Front. Microbiol., 2014, vol. 4, p. 576.

    Google Scholar 

  29. Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., and Pettersson, S., Host-gut microbiota metabolic interactions, Science, 2012, vol. 336, pp. 1262–1267.

    CAS  PubMed  Google Scholar 

  30. Panchenko, P.L., Kornilova, M.B., Perfilieva, K.S., and Markov, A.V., Contribution of symbiotic microbiota to adaptation of Drosophila melanogaster to an unfavorable growth medium, Biol. Bull., 2017, vol. 44, pp. 345–354. https://doi.org/10.1134/s1062359017040100

    Article  CAS  Google Scholar 

  31. Reuter, M., Bell, G., and Greig, D., Increased outbreeding in yeast in response to dispersal by an insect vector, Curr. Biol., 2007, vol. 17, pp. R81–R83.

    CAS  PubMed  Google Scholar 

  32. Rosenberg, E., Koren, O., Reshef, L., Efrony, R., and Zilber-Rosenberg, I., The role of microorganisms in coral health, disease and evolution, Nat. Rev. Microbiol., 2007, vol. 5, pp. 355–362.

    CAS  PubMed  Google Scholar 

  33. Rosenberg, E., Sharon, G., and Zilber-Rosenberg, I., The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework, Environ. Microbiol., 2009, vol. 11, pp. 2959–2962.

    PubMed  Google Scholar 

  34. Savinov, A.B., Autocenosis and democenosis as symbiotic systems and biological categories, Zh. Obshch. Biol., 2012, vol. 73, pp. 284‒301.

    CAS  PubMed  Google Scholar 

  35. Shin, S.C., Kim, S.H., You, H., Kim, B., Kim, A.C., Lee, K.A., Yoon, J.H., Ryu, J.H., and Lee, W.J., Drosophila microbiota modulates host developmental and metabolic homeostasis via insulin signaling, Science, 2011, vol. 334, pp. 670–674.

    CAS  PubMed  Google Scholar 

  36. Stamps, J.A., Yang, L.H., Morales, V.M., and Boundy-Mills, K.L., Drosophila regulate yeast density and increase yeast community similarity in a natural substrate, PLoS One, 2012, vol. 7, p. e42238.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Starmer, W.T., A comparison of Drosophila habitats according to the physiological attributes of the associated yeast communities, Evolution, 1981, vol. 35, pp. 38–52.

    CAS  PubMed  Google Scholar 

  38. Staubach, F., Baines, J.F., Künzel, S., Bik, E.M., and Petrov, D.A., Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment, PLoS One, 2013, vol. 8, e70749.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Téfit, M.A., Gillet, B., Joncour, P., Hughes, S., and Leulier, F., Stable association of a Drosophila-derived microbiota with its animal partner and the nutritional environment throughout a fly population’s life cycle, J. Insect Physiol., 2018, vol. 106, pp. 2‒12.

    PubMed  Google Scholar 

  40. Trinder, M., Daisley, B.A., Dube, J.S., and Reid, G., Drosophila melanogaster as a high-throughput model for host–microbiota interactions, Front. Microbiol., 2017, vol. 8, article 751.

    PubMed  PubMed Central  Google Scholar 

  41. Tryselius, Y., Samakovlis, C., Kimbrell, D.A., and Hultmark, D., CecC, a cecropin gene expressed during metamorphosis in Drosophila pupae, Eur. J. Biochem., 1992, vol. 204, pp. 395–399.

    CAS  PubMed  Google Scholar 

  42. Wong, C.N.A., Ng, P., and Douglas, A.E., Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster, Environ. Microbiol., 2011, vol. 13, pp. 1889–1900.

    PubMed  PubMed Central  Google Scholar 

  43. Wong, C.N.A., Vanhove, A.S., and Watnick, P.I., The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster, Dis. Model. Mech., 2016, vol. 9, pp. 271–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamada, R., Deshpande, S.A., Bruce, K.D., Mak, E.M., and Ja, W.W., Microbes promote amino acid harvest to rescue undernutrition in Drosophila, Cell Rep., 2015, vol. 10, pp. 865–872.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zilber-Rosenberg, I. and Rosenberg, E., Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution, FEMS Microbiol. Rev., 2008, vol. 32, pp. 723–735.                                                            Translated by P. Sigalevich

    CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, projects nos. 19-34-90141 and 18-04-00915).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dmitrieva.

Ethics declarations

The authors declare that they have no conflict of interest. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrieva, A.S., Maksimova, I.A., Kachalkin, A.V. et al. Age-Related Changes in the Yeast Component of the Drosophila melanogaster Microbiome. Microbiology 90, 229–236 (2021). https://doi.org/10.1134/S0026261721020028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721020028

Keywords:

Navigation