Skip to main content

Advertisement

Log in

Chemical Diversity of Metabolites and Antibacterial Potential of Actinomycetes Associated with Marine Invertebrates from Intertidal Regions of Daya Bay and Nansha Islands

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Marine actinobacteria particularly from marine environments are believed to be inexhaustible sources of biologically active molecules for biomedical and industrial applications. We isolated 126 strains of marine actinomycetes from marine invertebrates such as corals, sponges and gastropod molluscs from Daya Bay and Nansha Islands. The chemical diversity of the metabolites from the isolated strains was evaluated using HPLC-UV fingerprinting and their antibacterial activity was estimated. Preliminary chemical screening and antibacterial activity clearly illustrate that the marine invertebrates-associated actinomycetes are a rich source of novel biologically active compounds. Among the isolates, strain SCSIO-PTE-L054 was further investigated for its unique metabolic profile and antibacterial activity. The bioassay-guided isolation rendered a polycyclic tetramate macrolactam (PTM) as a major chemical constituent with potent antibacterial activity. Our results revealed that the Streptomyces sp., strain SCSIO-L054 is a new source of PTMs which could pave a way to isolation of new series of PTMs with a broad spectrum of activity. In summary, the present investigation makes it possible to select marine actinomycetes from Daya Bay and Nansha Islands as new potential sources to produce potent compounds for a wide range of applications in future drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abdelfattah, M.S., Elmallah, M.I.Y., Hawas, U.W., El-Kassema, L.T.A., and, Eid M.A.G., Isolation and characterization of marine-derived actinomycetes with cytotoxic activity from the Red Sea coast, Asian Pac. J. Trop. Biomed., 2016, vol. 6, pp. 651–657.

    Article  Google Scholar 

  2. Balouiri, M., Sadiki, M., and Ibnsouda, S.K., Methods for in vitro evaluating antimicrobial activity: a review, J. Pharm. Anal., 2016, vol. 6, pp. 71–79.

    Article  Google Scholar 

  3. Baltz, R.H., Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration?, J. Ind. Microbiol. Biotechnol., 2006, vol. 33, pp. 507–513.

    Article  CAS  Google Scholar 

  4. Carrano, L. and Marinelli, F., The relevance of chemical dereplication in microbial natural product screening, J. App. Bioanal., 2015, vol. 1, pp. 55–67.

    Article  CAS  Google Scholar 

  5. Cumsille, A., Undabarrena, A., González, V., Claverías, F., Rojas, C., and Cámara, B., Biodiversity of Actinobacteria from the South Pacific and the assessment of Streptomyces chemical diversity with metabolic profiling, Mar. Drugs., 2017, vol. 15, p. 286.

    Article  Google Scholar 

  6. D’Costa., V.M., King, C.E., Kalan, L., Morar, M., Sung., W.W.L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G.B., Poinar, H.N., and Wright, G.D., Antibiotic resistance is ancient, Nature, 2011, vol. 477, p. 457.

  7. Dharmaraj, S., Marine Streptomyces as a novel source of bioactive substances, World J. Microb. Biot., 2010, vol. 26, no. 12, pp. 2123−2139.

    Article  CAS  Google Scholar 

  8. Fatahi-Bafghi, M., Rasouli-nasab, M., Yasliani-Fard, S., Habibnia, S., Gharehbaghi, F., Eshraghi, S.S., and Heidarieh, P., Diversity and antimicrobial activity of actinomycetes isolated from Lut Desert: the extremely arid climatic zones of Iran, Int. J. Pept. Res. Ther., 2019, vol. 25, no. 3, pp. 1201–1207.

    Article  CAS  Google Scholar 

  9. Fguira, L.F.B., Fotso, S., Ameur-Mehdi, R.B., Mellouli, L., and Laatsch, H, Purification and structure elucidation of antifungal and antibacterial activities of newly isolated Streptomyces sp. strain US80, Res. Microbiol., 2005, vol. 156, pp. 341–347.

    Article  Google Scholar 

  10. Hentschel, U., Fieseler, L., Wehrl, M., Gernert, C., Steinert, M., Hacker, J., and Horn, M., Microbial diversity of marine sponges, in Sponges (Porifera), Springer, 2003, pp 59–88.

    Google Scholar 

  11. Jenkins, R., Burton, N., and Cooper, R., Effect of manuka honey on the expression of universal stress protein A in meticillin-resistant Staphylococcus aureus,Int. J. Antimicrob. Agents, 2011, vol. 37, pp. 373–376.

    Article  CAS  Google Scholar 

  12. Jomon, K., Kuroda, Y., Ajisaka, M., and Sakai, H., A new antibiotic, ikarugamycin, J. Antibiot. 1972, vol. 25, no. 5, pp. 271–280.

    Article  CAS  Google Scholar 

  13. Kalyani, B.S., Krishna, P., and Sreenivasulu, K., Screening and identification of novel isolate Streptomyces sp., NLKPB45 from Nellore costal region for its biomedical applications, Saudi J. Biol. Sci. 2019, vol. 26, no. 7, pp. 655–1660.

    Article  Google Scholar 

  14. Kim, D.G., Moon, K., Kim, S.H., Park, S.H., Park, S., Lee, S.K., Oh, K.B., Shin, J., and Oh, D.C., Bahamaolides A and B, antifungal polyene polyol macrolides from the marine actinomycete Streptomyces sp., J. Nat. Prod., 2012, vol. 75, pp. 959–967.

    Article  CAS  Google Scholar 

  15. Kong, F. and Carter, G.T., Structure determination of glycinocins A to D, further evidence for the cyclic structure of the amphomycin antibiotics, J. Antibiot., 2003, vol. 56, pp. 557–564.

    Article  CAS  Google Scholar 

  16. Kumar, P.S., Duraipandiyan, V., and Ignacimuthu, S., Isolation, screening and partial purification of antimicrobial antibiotics from soil Streptomyces sp. SCA 7, Kaohsiung J. Med. Sci., 2014, vol. 30, pp. 435–446.

    Article  Google Scholar 

  17. Kumar, P.S., Stalin, A., Duraipandiyan, V., Al-Dhabi, N.A., Yuvaraj, P., Balakrishna, K., and Ignacimuthu, S., Isolation of chemical constituents from Nonomuraea species: in vitro and in silico evaluation of its antibacterial properties, Beni-Seuf Univ.J. Bas. Appl. Sci., 2017, vol. 6, pp. 15–23.

    Google Scholar 

  18. Lacret, R., Oves-Costales, D., Gómez, C., Díaz, C., de la Cruz, M., Pérez-Victoria, I., Vicente, F., Genilloud, O., and Reyes, F., New ikarugamycin derivatives with antifungal and antibacterial properties from Streptomyces zhaozhouensis,Mar. Drugs, 2015, vol. 13, pp. 128–140.

    Article  CAS  Google Scholar 

  19. Lin, H.N., Wang, K.L., Wu, Z.H., Tian, R.M., Liu, G.Z., and Xu, Y., Biological and chemical diversity of bacteria associated with a marine flatworm, Mar. Drugs, 2017, vol. 15, p. 281.

    Article  Google Scholar 

  20. Mo, X., Li, Q., and Ju, J., Naturally occurring tetramic acid products: isolation, structure elucidation and biological activity, RSC Adv., 2014, vol. 4, pp. 50566–50593.

    Article  CAS  Google Scholar 

  21. Nagashima, K., Shimizu, T., Takeshi, K., Kawakami, M., Yasokawa, D., Nakagawa, R., and Okumura, Y., A simple and sensitive polymerase chain reaction method for the detection of food-related bacteria, Food Sci. Technol. Res., 2007, vol. 6, no. 2, pp. 115–118.

    Article  Google Scholar 

  22. Nolte, E. and McKee, C.M., Measuring the health of nations: updating an earlier analysis, Health Affairs, 2008, vol. 27, pp. 58–71.

    Article  Google Scholar 

  23. Peraud, O., Biggs, J.S, Hughen, R.W., Light, A.R., Concepcion, G.P., Olivera, B.M., and Schmidt, E.W., Microhabitats within venomous cone snails contain diverse actinobacteria, Appl. Environ. Microbiol., 2009, vol. 75, pp. 6820–6826.

    Article  CAS  Google Scholar 

  24. Ramasamy, P., Vino, A.B., Saravanan, R., Subhapradha, N., Shanmugam, V., and Shanmugam, A., Screening of antimicrobial potential of polysaccharide from cuttlebone and methanolic extract from body tissue of Sepia prashadi Winkworth, 1936, Asian Pac. J. Trop. Biomed., 2011, vol. 1, pp. S244–S248.

    Article  Google Scholar 

  25. Rather, S.A., Shah, A.M., Ali, S.A., Dar, R.A., Rah, B., Ali, A., and Hassan, Q.P., Isolation and characterization of Streptomyces tauricus from Thajiwas glacier—a new source of actinomycin D, Med. Chem. Res., 2017, vol. 26, pp. 1897–1902.

    Article  CAS  Google Scholar 

  26. Saha, S., Zhang, W., Zhang, G., Zhu, Y., Chen, Y., Liu, W., Yuan, C., Zhang, Q., Zhang, H., Zhang, L., Zhang, W., and Zhang, C., Activation and characterization of a cryptic gene cluster reveals a cyclization cascade for polycyclic tetramate macrolactams, Chem. Sci., 2017, vol. 8, pp. 1607–1612.

    Article  CAS  Google Scholar 

  27. Sujatha, P., Raju, K. B., and Ramana, T., Studies on a new marine streptomycetes BT-408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus.Microbiol. Res., 2005, vol. 160, no. 2, pp. 119–126.

    Article  CAS  Google Scholar 

  28. Takagi, M. and Shin-ya, K., Construction of a natural product library containing secondary metabolites produced by actinomycetes, J. Antibiot., 2012, vol. 65, p. 443.

    Article  CAS  Google Scholar 

  29. Taylor, M.W., Schupp, P.J., De Nys, R., Kjelleberg, S., and Steinberg, P.D., Biogeography of bacteria associated with the marine sponge Cymbastela concentrica,Environ. Microbiol., 2005, vol. 7, pp. 419–433.

    Article  CAS  Google Scholar 

  30. Wang, X., Zhang, M., Gao, J., Pu, T., Bilal, M., Wang, Y., and Zhang, X., Antifungal activity screening of soil actinobacteria isolated from Inner Mongolia, China, Biol. Control., 2018, vol. 127, pp. 78–84.

    Article  Google Scholar 

  31. Xu, D., Han, L., Li, C., Cao, Q., Zhu, D., Barrett, N.H., Harmody, D., Chen, J., Zhu, H., McCarthy, P.J., Sun, X., and Wang, G., Bioprospecting deep-sea Actinobacteria for novel anti-infective natural products, Front. Microbiol., 2018, vol. 9, p. 787.

    Article  Google Scholar 

  32. Yu, J., Zhang, L., Liu, Q., Qi, X., Ji, Y., and Kim, B.S., Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China, Asian Pac. J. Trop. Biomed., 2015, vol. 5, pp. 555–560.

    Article  Google Scholar 

  33. Yuan, G.J., Li, P.B., Yang, H., Wu, X.Y., Tu, G.Q., and Wei, S.J., Chemical screening of sixty-one actinomycete strains and anti-methicillin-resistant Staphylococcus aureus assays of target strains, CJNM., 2012, vol. 10, no. 2, pp. 155–160.

    Article  CAS  Google Scholar 

  34. Zhang, L., Integrated approaches for discovering novel drugs from microbial natural products, in Natural Products, Springer, 2005, pp 33–55.

    Book  Google Scholar 

  35. Zhang, Q., Li, S., Chen, Y., Tian, X., Zhang, H., Zhang, G., Zhu, Y., Zhang, S., Zhang, W., Zhang, C., New diketopiperazine derivatives from a deep-sea-derived Nocardiopsis alba SCSIO 03039, J. antibiot., 2013, vol. 66, p. 31.

    Article  Google Scholar 

  36. Zhang, W., Zhang, G., Zhang, L., Liu, W., Jiang, X., Jin, H., Liu, Z., Zhang, H.B., Zhou, A., and Zhang, C., New polycyclic tetramate macrolactams from marine-derived Streptomyces sp. SCSIO 40060, Tetrahedron., 2018, vol. 74, pp. 6839–6845.

    Article  CAS  Google Scholar 

  37. Zhang, X., Du, J., Wang, Y., Chen, S., and Wang, Y., Escherichiacoli GutM4 produces 2,5-diketopiperazines and inhibits human pathogens in vitro, Electron. J. Biotechnol., 2017, vol. 28, pp. 35–40.

    Article  CAS  Google Scholar 

  38. Zheng, X., Wang, J., Chen, Z., Zhang, H., Wang, Z., Zhu, Y., and Liu, B. A Streptomyces sp. strain: isolation, identification, and potential as a biocontrol agent against soilborne diseases of tomato plants, Biol. Control., 2019, vol. 136, p. 104004.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Mrs Aijun Sun, Dr Xiaohong Zheng, Ms Yun Zhang and Dr Zhihui Xiao in the analytical facility center of the SCSIO for recording MS and NMR data.

Funding

This work was supported by the National Natural Science Foundation of China (41706169, U1501223 and U1706206), the Chinese Academy of Sciences (XDA13020302) and Natural Science Foundation of Guangdong Province (2016A030312014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Ju.

Ethics declarations

COMPETING INTERESTS

None declared.

ETHICAL APPROVAL

Not required.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.S., Ling, C.Y., Zhou, Z.B. et al. Chemical Diversity of Metabolites and Antibacterial Potential of Actinomycetes Associated with Marine Invertebrates from Intertidal Regions of Daya Bay and Nansha Islands. Microbiology 89, 483–492 (2020). https://doi.org/10.1134/S0026261720040062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261720040062

Keywords: