Skip to main content
Log in

Yeast Communities Associated with Diptera of the White Sea Littoral

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Relationship between symbiotic yeast and Diptera insects are studied mainly on fruit flies (Drosophilidae). Evolutionary experiments showed that changes in the composition of the yeast microbiota vectored by flies in their gut and on the body surface contributes to the adaptation of laboratory Drosophila populations to the high-salt growth medium. Although saline substrates are not commonly used by Drosophilidae in nature, species adapted to such substrates are known in other families of Diptera. Yeast communities associated with these species are studied insufficiently. This is the first report on the yeast communities associated with two Diptera species living near the White Sea, Paracoenia fumosa (Stenhammar, 1844) (Ephydridae) and Fucellia fucorum (Fallén, 1819) (Anthomyiidae). Their larvae develop in the coastal saline lagoons and in algae driven ashore. The P. fumosa yeast microbiota includes opportunistic species Pichia kluyveri Bedford ex Kudryavtsev, 1960 and P. kudriavzevii Boidin, Pignal, Besson, 1965 and is characterized by its highly variable abundance (the number of colony-forming units varies widely in different individuals). F. fucorum is characterized by a more stable yeast community, including species common in White Sea algae and coastal waters (Debaryomyces hansenii (Zopf) Lodder, Kreger-van Rij, 1952, Metschnikowia zobellii (van Uden, Castelo-Branco) van Uden, 1962, and M. bicuspidata (Metschnikoff) Kamienski, 1899). These two species of littoral flies shared no common yeast species. Moreover, none of the yeast species found in the littoral flies was detected in the evolutionary experiment on the adaptation of Drosophila to the high-salt growth medium (the similarity is limited only to the Pichia genus level). Contrasting differences in the yeast microbiome of two ecologically similar littoral species of Diptera may indicate, on the one hand, specificity, and, on the other, evolutionary plasticity of the relationship between salt-tolerant flies and yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Anagnostou, C., Dorsch, M., and Rohlfs, M., Influence of dietary yeasts on Drosophila melanogaster life-history traits, Entomol. Exp. Appl., 2010, vol. 136, pp. 1–11. https://doi.org/10.1111/j.1570-7458.2010.00997.x

    Article  Google Scholar 

  2. Babjeva, I. and Reshetova, I., Yeast resources in natural habitats at polar circle latitude, Food Technol. Biotechnol., 1998, Special iss. Yeast Nutrition and Natural Habitat, vol. 36, pp. 1–5.

    Google Scholar 

  3. Becher, P.G., Flick, G., Rozpędowska, E., Schmidt, A., Hagman, A., Lebreton, S., Larsson, M.C., Hansson, B.S., Piškur, J., Witzgall, P., and Bengtsson, M., Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development, Functional Ecol., 2012, vol. 26, pp. 822‒828.

    Article  Google Scholar 

  4. Bordenstein, S.R. and Theis, K.R., Host biology in light of the microbiota: ten principles of holobionts and hologenomes, PLoS Biol., 2015, vol. 13, article e1002226.

    Article  Google Scholar 

  5. Breuer, U. and Harms, H., Debaryomyces hansenii‒an extremophilic yeast with biotechnological potential, Yeast, 2006, vol. 23, pp. 415‒437.

    Article  CAS  Google Scholar 

  6. Brummel, T., Ching, A., Seroude, L., Simon, A.F., and Benzer, S., Drosophila lifespan enhancement by exogenous bacteria, Proc. Natl Acad. Sci. U. S. A., 2004, vol. 101, pp. 12974–12979.

    Article  CAS  Google Scholar 

  7. Chan, G.F., Gan, H.M., Ling, H.L., and Rashid, N.A.A., Genome sequence of Pichia kudriavzevii M12, a potential producer of bioethanol and phytase, Eukaryot. Cell, 2012, vol. 11, pp. 1300–1301.

    Article  CAS  Google Scholar 

  8. Chen, S.C., Chen, Y.C., Kwang, J., Manopo, I., Wang, P.C., Chaung, H.C., Liaw, L.L., and Chiu, S.H., Metschnikowia bicuspidata dominates in Taiwanese cold-weather yeast infections of Macrobrachium rosenbergii,Dis. Aquat. Organ., 2007, vol. 75, pp. 191–199.

    Article  CAS  Google Scholar 

  9. Coluccio, A.E., Rodriguez, R.K., Kernan, M.J., and Neiman, A.M., The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila,PLoS One, 2008, vol. 3, article e2873.

    Article  Google Scholar 

  10. Deutscher, A.T., Reynolds, O.L., and Chapman, T.A., Yeast: an overlooked component of Bactrocera tryoni (Diptera: Tephritidae) larval gut microbiota, J. Econ. Entomol., 2017, vol. 110, pp. 298–300.

    CAS  PubMed  Google Scholar 

  11. Dmitrieva, A.S., Ivnitskii, S.B., and Markov, A.V., Adaptation of Drosophila melanogaster to an unfavorable feed substrate is accompanied by broadening of the trophic niche, Zh. Obshch. Biol., 2016, vol. 77, pp. 249‒261.

    CAS  PubMed  Google Scholar 

  12. Dmitrieva, A.S., Ivnitsky, S.B., Maksimova, I.A., Panchenko, P.L., Kachalkin, A.V., and Markov, A.V., Symbiotic yeasts affect adaptation of Drosophila melanogaster to food substrate with high NaCl concentration, PLoS One, 2019, vol. 14, no. 11. e0224811.

    Article  CAS  Google Scholar 

  13. Dobson, T., Seaweed flies (Diptera: Coelopidae, etc.), in Marine Insects, Cheng, L., Ed., New York: Elsevier, 1976, pp. 447‒464.

    Google Scholar 

  14. Drake, C.V., British Ephydridae (Diptera), 2006. URL: https://www.diptera-in-beeld.nl/Ref-Key%20Ephydri-dae%20British%20key%20-%20new%20(2006)-C.M.Drake.pdf.

  15. Erkosar, B., Storelli, G., Defaye, A., and Leulier, F., Host-intestinal microbiota mutualism: “learning on the fly”, Cell Host Microbe, 2013, vol. 13, pp. 8–14.

    Article  CAS  Google Scholar 

  16. Ferrar P., A guide to the breeding habits and immature stages of Diptera Cyclorrhapha, Entomonograph, Brill, E.J., Ed., Leiden: Scandinav. Sci. Press, 1987, vol. 8, part 1.

    Google Scholar 

  17. Ganter, P.G., Yeast and invertebrate associations, in Biodiversity and Ecophysiology of Yeasts, Rosa, C. and Peter, G., Eds., New York: Springer, 2006, pp. 303–370.

    Google Scholar 

  18. Glushakova, A.M., Kachalkin, A.V., and Chernov, I.Y., Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil, Euras. Soil Sci., 2011, vol. 44, pp. 886‒892.

    Article  Google Scholar 

  19. Hammond, E.C., Biological effects of population density in lower organisms (concluded), Quart. Rev. Biol., 1939, vol. 14, no. 1, pp. 35‒59.

    Article  Google Scholar 

  20. Herbst, D.B., Comparative population ecology of Ephydra hians Say (Diptera: Epbydridae) at Mono Lake (California) and Abert Lake (Oregon), Hydrobiol., 1988, vol. 158, pp. 145‒166.

    Article  CAS  Google Scholar 

  21. Hoang, D., Kopp, A., and Chandler, J.A., Interactions between Drosophila and its natural yeast symbionts‒is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?, Peer J., 2015, vol. 3, article e1116.

    Article  Google Scholar 

  22. Ivnitskii, S.B., Maksimova, I.A., Panchenko, P.L., Dmitrieva, A.S., Kachalkin, A.V., Kornilova, M.B., Perfil’eva, K.S., and Markov, A.V., Microbiome role in the adaptation of Drosophila melanogaster to the feed substrate with elevated NaCl concentration, Zh. Obshch. Biol., 2018, vol. 79, pp. 393–403.

    Google Scholar 

  23. Kachalkin, A.V., Glushakova, A.M., and Pankratov, T.A., Yeast population of the Kindo Peninsula lichens, Microbiology (Moscow), 2017, vol. 86, pp. 786‒792.

    Article  CAS  Google Scholar 

  24. Kachalkin, A.V., Yeasts of the White Sea intertidal zone and description of Glaciozyma litorale sp. nov., Antonie van Leeuwenhoek, 2014, vol. 105, pp. 1073–1083.

    Article  CAS  Google Scholar 

  25. Lee, W.-J. and Brey, P.T., How microbiomes influence metazoan development: insights from history and Drosophila modeling of gut-microbe interactions, Annu. Rev. Cell Develop. Biol., 2013, vol. 29, pp. 571‒592.

    Article  CAS  Google Scholar 

  26. Maksimova, I.A., Glushakova, A.M., Kachalkin, A.V., Chernov, I.Y., Panteleeva, S.N., and Reznikova, Z.I., Yeast communities of Formica aquilonia colonies, Microbiology (Moscow), 2016, vol. 85, pp. 124‒129.

    Article  CAS  Google Scholar 

  27. Margulis, L. and Fester, R. Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis, Boston: MIT, 1991.

    Google Scholar 

  28. Panchenko, P.L., Kornilova, M.B., Perfilieva, K.S., and Markov, A.V., Contribution of symbiotic microbiota to adaptation of Drosophila melanogaster to an unfavorable growth medium, Biol. Bull., 2017, vol. 44, no. 4, pp. 345‒354.

    Article  CAS  Google Scholar 

  29. Petersen, C.E. and Wiegert, R.G., Coprophagous nutrition in a population of Paracoenia bisetosa (Ephydridae) from Yellowstone National Park, Oikos, 1982, vol. 39, pp. 251–255.

    Article  Google Scholar 

  30. Pintar, J. and Starmer, W.T., The costs and benefits of killer toxin production by the yeast Pichia kluyveri,Antonie van Leeuwenhoek, 2003, vol. 83, pp. 89‒97.

    Article  CAS  Google Scholar 

  31. Stamps, J.A., Yang, L.H., Morales, V.M., and Boundy-Mills, K.L., Drosophila regulate yeast density and increase yeast community similarity in a natural substrate, PLoS One, 2012, vol. 7, article e42238.

    Article  CAS  Google Scholar 

  32. Starmer, W.T. and Fogelman, J.C., Coadaptation of Drosophila and yeasts in their natural habitat, J. Chem. Ecol., 1986, vol. 12, pp. 1037–1055.

    Article  CAS  Google Scholar 

  33. Stefanini, I., Yeast-insect associations: it takes guts, Yeast, 2018, vol. 35, pp. 315–330.

    Article  CAS  Google Scholar 

  34. Stergiopoulos, K., Cabrero, P., Davies, S.A., and Dow, J.A., Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress, Physiol. Genom., 2009, vol. 37, pp. 1‒11.

    Article  CAS  Google Scholar 

  35. Storelli, G., Defaye, A., Erkosar, B., Hols, P., Royet, J., and Leulier, F., Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing, Cell Metab., 2011, vol. 14, pp. 403–414.

    Article  CAS  Google Scholar 

  36. Te Velde, J.H., Molthoff, C.F.M., and Scharloo, W., The function of anal papillae in salt adaptation of Drosophila melanogaster larvae, J. Evol. Biol., 1988, vol. 2, pp. 139‒153.

    Article  Google Scholar 

  37. Trinder, M., Daisley, B.A., Dube, J.S., and Reid, G., Drosophila melanogaster as a high-throughput model for host–microbiota interactions, Front. Microbiol., 2017, vol. 8, article 751.

    Article  Google Scholar 

  38. van Uden, N. and Castelo-Branco, R., Metschnikowia zobellii sp. nov. and M. krissii sp. nov., two yeasts from the Pacific Ocean pathogenic for Daphnia magna,J. Gen. Microbiol., 1961, vol. 26, pp. 141–148.

    Article  CAS  Google Scholar 

  39. Waddington, C.H., Canalization of development and genetic assimilation of acquired characters, Nature, 1959, vol. 183, pp. 1654‒1655.

    Article  CAS  Google Scholar 

  40. Weiser, J., Wegensteiner, R., Händel, U., and Žižka, Z., Infections with the ascomycete fungus Metschnikowia typographi sp. nov. in the bark beetles Ips typographus and Ips amitinus (Coleoptera, Scolytidae), Folia Microbiol., 2003, vol. 48, pp. 611–618.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Russian Foundation for Basic Research, project no. 18-04-00915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Yakovleva.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, I.A., Kachalkin, A.V., Yakovleva, E.Y. et al. Yeast Communities Associated with Diptera of the White Sea Littoral. Microbiology 89, 212–218 (2020). https://doi.org/10.1134/S0026261720020071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261720020071

Keywords:

Navigation