Skip to main content
Log in

Buried Soils as a New Source for Isolation of Biotechnologically Significant Bacterial Strains

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Investigation of molecular genetic diversity in paleosoil microbial communities revealed that ~50% of ancient ribotypes were not detected among the ribotypes of the modern microbial communities. Thus, reactivation of ancient microorganisms and investigation of their physiological properties as potentially valuable producers for biotechnology is advisable. The proteolytic bacterial component of paleosoils below burial mounds collected from the vials with votive food at the Peschanyi-4 and Netkachevo burial mounds (15–centuries BC) (Volgograd and Rostov oblasts, Russia) was investigated. Viable cell numbers of heterotrophic bacteria in reactivated samples were (1.5–16.0) × 107 CFU/g soil (growth on LB agar). Using alternating inoculation into liquid media and plating on solid media resulted in isolation of pure cultures of several strains, which were then identified based on analysis of their 16S rRNA gene sequences. Strains of the following species were isolated: Bacillus coagulans (Lactobacillus coagulans), a potentially valuable probiotic; Aquamicrobium terrae, a proteolytic producing surfactants and degrading organic matter; Bacillus cereus, the strain toxicogenic for outbred white mice at intra-abdominal application; Staphylococcus hominis and St. epidermidis, opportunistic pathogens belonging to normal human skin microflora. Apart from Bacillus cereus, all strains exhibited high production of neuroactive amines (DOPA, DOPAC, DA, 5-HTP, HVA, and 3-MT) and amino acids (Asp, Glu, Gly, Tau, and GABA). The strains isolated from the vials with votive food were mostly those associated with humans, rather than typical members of soil microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Adkins, J.P., Cornell, L.A., and Tanner, R.S., Microbial composition of carbonate petroleum reservoir fluids, Geomicrobiol. J., 1992, vol. 10, pp. 87–97.

    Article  Google Scholar 

  2. Atlas, R.M. and Cerniglia, C.E., Bioremediation of petroleum pollutants: diversity and environmental aspects of hydrocarbon biodegradation, BioSci., 1995, vol. 45, pp. 332–338.

    Article  Google Scholar 

  3. Bomko, T.V., Martynov, A.V., Nosil’skaya, T.N., and Kabluchko, T.V., The king of probiotics: Bacillus coagulans in a modern combined probiotic preparation Laktovit Forte, Ann. Mechnikov Inst., 2016, no. 1, pp. 17–37.

  4. Bouchez-Naïtali, M., Rakatozafy, H., Marchal, R., Leveau, J.Y., and Vandecasteele, J.P. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake, Appl. Microbiol., 1999, vol. 86, pp. 421–428.

    Article  Google Scholar 

  5. Bukharin, O.V., Gintsburg, A.L., Romanova, Yu.M., and El’-Registan, G.I., Mekhanizmy vyzhivaniya bakterii (Mechanisms of Bacterial Survival), Moscow: Meditsina, 2005.

  6. Claus, D. and Berkeley, R.C.W., Genus Bacillus Cohn 1872, in Bergey’s Manual of Systematic Bacteriology, Snetah, P.H.A., Mair, N.S., Sharpe, M.E., and Holt, J.G., Eds., Baltimore: Williams and Wilkins, 1986, pp. 1105–1139.

    Google Scholar 

  7. Demkina, T.S., Borisov, A.V., and Demkin, V.A., Microbiological study of paleosols buried under kurgans in the desert-steppe zone of the Volga-Don interfluve, Euras. Soil Sci., 2004, vol. 37, pp. 743–748.

    Google Scholar 

  8. Demkina, T.S., Borisov, A.V., Eltsov, M.V., and Demkin, V.A., Comparative characterization of microbial communities in kurgans, paleosols buried under them, and background surface soil in the steppe zone of the lower Volga region, Euras. Soil Sci., 2007, vol. 40, pp. 665–674.

    Article  Google Scholar 

  9. Demkina, T.S., Demkin, V.A., and Borisov, A.V., Microbial communities in the paleosols of archaeological monuments in the desert-steppe zone, Euras. Soil Sci., 2000, vol. 33, pp. 978–986.

    Google Scholar 

  10. Demkina, T.S., Khomutova, T.E., Kashirskaya, N.N., Demkina, E.V., Stretovich, I.V., El-Registan, G.I., and Demkin, V.A., Age and activation of microbial communities in soils under burial mounds and in recent surface soils of steppe zone, Euras. Soil Sci., 2008, vol. 41, pp. 1439–1447.

    Article  Google Scholar 

  11. Demkin, V.A., Borisov, A.V., Demkina, T.S., Khomutova, T.E., Zolotareva, B.N., Kashirskaya, N.N., Udal’tsov, S.N., and El’tsov, M.V., Volgo-Donskie stepi v drevnosti i srednevekov’e (no materialam pochvenno-arkheologicheskikh issledovanii (Volga-Don Steppes in Ancient and Medieval Times (Based on Materials of Soil Archeology Research), Pushchino: SYNCHROBOOK, 2010.

  12. Demkin, V.A., Demkina, T.S., and Udal’tsov, S.N., Reconstruction of votive food in clay vessels from burial mounds using the phosphate and microbiological methods, Vestn. Arkheol. Antropol. Etnogr., 2014, no. 2 (25), pp. 148–159.

  13. Demkin, V.A., Lukashov, A.V., Kovalevskaya, I.S., and Skripnichenko, I.I., On the possibility of historico-social reconstruction in soil archaeological research, Prepr. Pushchino, 1988, pp. 15–16.

    Google Scholar 

  14. De Vecchi, E., Lactobacillus sporogenes or Bacillus coagulans: misidentification or mislabelling?, Int. J. Probiot. Prebiot., 2006, vol. 1, pp. 3–10.

    Google Scholar 

  15. El-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Galchenko, V.F., Suzina, N.E., and Duda, V.I., Adaptogenic functions of extracellular autoregulators of microorganisms, Microbiology (Moscow), 2006, vol. 75, pp. 380–389.

    Article  CAS  Google Scholar 

  16. FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, FAO/WHO 2001.

  17. Frolov, Yu.G. and Grodskii, A.S., Laboratornye raboty i zadachi po kolloidnoi khimii (Laboratory Works and Tasks on Colloidal Chemistry, Moscow: Khimiya, 1986. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, no. 41, pp. 95–98.

  18. Kashirskaya, N.N., Khomutova, T.E., Demkin, V.A., Dmitriev, V.V., Duda, V.I., and Suzina, N.E., The morphology of the cells and the biomass of the microorganisms in the buried paleosoils and modern steppe of the lower Volga Region, Euras. Soil Sci., 2010, vol. 43, pp. 1140–1149.

    Article  Google Scholar 

  19. Katoh, K., Asimenos, G., and Toh, H., Multiple alignment of DNA sequences with MAFFT, Methods Mol. Biol., 2009, vol. 537, pp. 39–64.

    Article  CAS  Google Scholar 

  20. Kryazhevskikh, N.A., Demkina, E.V., Galchenko, V.F., El-Registan, G.I., Manucharova, N.A., and Soina, V.S., Reactivation of dormant and nonculturable bacterial forms from paleosoils and subsoil permafrost, Microbiology (Moscow), 2012, vol. 81, pp. 435–445.

    Article  CAS  Google Scholar 

  21. Kryazhevskikh, N.A., Demkina, E.V., Loiko, N.G., Baslerov, R.V., Kolganova, T.V., Soina, V.S., Manucharova, N.A., Gal’chenko, V.F., and El’-Registan, G.I., Comparison of the adaptive potential of the Arthrobacter oxydans and Acinetobacter lwoffii isolates from permafrost sedimentary rock and the analogous collection strains, Microbiology (Moscow), 2013, vol. 82, pp. 29–42.

    Article  CAS  Google Scholar 

  22. Kampfer, P., Martin, E., Lodders, N., and Jakel, U., Transfer of Defluvibacter lusatiensis to the genus Aquamicrobium as Aquamicrobium lusatiense comb. nov. and description of Aquamicrobium aerolatum sp. nov., Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 2468–2470.

    Article  Google Scholar 

  23. Manucharova, N.A., Trosheva, E.V., Kol’tsova, E.M., Demkina, E.V., El’-Registan, G.I., Karaevskaya, E.V., Rivkina, E.M., and Mardanov, A.V., Characterization of the structure of the prokaryotic complex of the Antarctic permafrost by molecular genetic techniques, Microbiology (Moscow), 2016, vol. 85, pp. 102–108.

    Article  CAS  Google Scholar 

  24. Mironov, V.V. and Ivanov, Y.A., Test results in-vessel composting system at the cattle farm located in the central part of Russia, Agricultural Mechanization in Asia, Africa, and Latin America, 2018, vol. 49, no. 3, pp. 86–90.

    Google Scholar 

  25. Nazina, T.N., Sokolova, D.Sh., Babich, T.L., Semenova, E.M., Borzenkov, I.A., Bidzhieva, S.Kh., Merkel, A.Yu., Khisametdinov, M.R., and Tourova, T.P., Phylogenetic diversity of microorganisms from the sludge of a biogas reactor processing oil-containing and municipal waste, Microbiology (Moscow), 2018, vol. 87, pp. 416–424.

    Article  CAS  Google Scholar 

  26. Netrusov, A.I., Egorova, M.A., and Zakharchuk, L.M., Praktikum po mikrobiologii (Practical Course in Microbiology), Moscow: Akademiya, 2005.

  27. Oleskin, A.V., El’-Registan, G.I., and Shenderov, B.A., Role of neuromediators in the functioning of the human microbiota: “Business talks” among microorganisms and the microbiota-host dialogue, Microbiology (Moscow), 2016, vol. 85, pp. 1–22.

    Article  CAS  Google Scholar 

  28. Oleskin, A.V., Zhilenkova, O.G., Shenderov, B.A., Amerkhanova, A.M., Kudrin, V.S., and Klodt, P.M., Lactobacilli leaven cultures as producers of neuromediators: biogenic amines and amino acids, Mol. Prom., 2014, no. 9, pp. 42–43.

  29. Petiot, C. and De Guardia, A., Composting in a laboratory reactor: a review, Compost Sci. Utilizat., 2004, vol. 12, pp. 69–79.

    Article  Google Scholar 

  30. Petric, I., Helic, A., and Avdic, E.A., Evolution of process parameters and determination of kinetics for co-composting of organic fraction of municipal solid waste with poultry manure, Bioresource Technol., 2012, vol. 117, pp. 107–116.

    Article  CAS  Google Scholar 

  31. Pfennig, N. and Lippert, K.D., Uber das Vitamin B12-Bedfirfnis phototropher Schwefelbakterien, Arch. Mikrobiol., 1966, vol. 55, pp. 245–256.

    Article  CAS  Google Scholar 

  32. Reavskii, D.S., Model’ mira skifskoi kul’tury (World Model of the Scythian Culture), Moscow: Nauka, 1985.

  33. Savust’yanenko, A.V., Application of the probiotic Lactobacillus sporogenes (Bacillus coagulans) in clinical practive, Nov. Med. Farm., 2011, no. 8 (362), pp. 1–3.

  34. Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.

    Article  CAS  Google Scholar 

  35. Tiedje, J.M., Asuming-Brempong, S., Nuesslein, K., Marsh, T.L., and Flynn, S.J., Opening the black box of microbial diversity, Appl. Soil Ecol., 1999, vol. 13, pp. 109–122.

    Article  Google Scholar 

  36. Vainshtein, M.B. and Kudryashova, E.B., Nannobacteria, Microbiology (Moscow).,2000, vol. 69, pp. 129–138.

    Article  CAS  Google Scholar 

  37. Van Hamme, J.D., Singh, A., and Ward, O.P., Recent advances in petroleum microbiology, Microbiol. Mol. Biol., 2003, vol. 67, pp. 503–549.

    Article  CAS  Google Scholar 

  38. Wu, Z.-G., Wang, F., Gu, C.-G., Zhang, Y.-P., Yang, Z.-Z., Wu, X.-W., and Jiang, X., Aquamicrobium terrae sp. nov., isolated from the polluted soil near a chemical factory, Antonie van Leeuwenhoek, 2014, vol. 105, pp. 1131–1137.

    Article  CAS  Google Scholar 

  39. Yulish, E.I. and Krivushev, B.I., Problems of intestinal disbacteriosis and methods for its correction, Zdor. Rebenka, 2011, no. 7 (34), pp. 1–4.

  40. Zajic, J.E., Guignard, H., and Gerson, D.F., Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus, Biotechnol. Bioeng., 1977, vol. 19, pp. 1303–1320.

    Article  CAS  Google Scholar 

  41. Zakharova, A.M., Kartsova, L.A., and Grinshtein, I.L., Determination of organic acids, carbohydrates, and sweeteners in foodstuffs and biologically active additives using the method of high-efficiency liquid chromatography, Analit. Kontrol., 2013, vol. 17, no. 2, pp. 204–210.

    Google Scholar 

  42. Zorpas, A.A. and Loizidou, M., Sawdust and natural zeolite as a bulking agent for improving quality of a composting product from anaerobically stabilized sewage sludge, Bioresource Technol., 2008, vol. 99, pp. 7545–7552.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of a state task. The experiments on the study of the hydrocarbon-oxidizing activity of the strains were supported by the Russian Foundation for Basic Research within the framework of the scientific tasks of project no. 18-29-05009 MK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Demkina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demkina, E.V., Doroshenko, E.V., Babich, T.L. et al. Buried Soils as a New Source for Isolation of Biotechnologically Significant Bacterial Strains. Microbiology 88, 631–641 (2019). https://doi.org/10.1134/S0026261719050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719050059

Keywords:

Navigation