Skip to main content
Log in

Genome of a Member of the Candidate Archaeal Phylum Verstraetearchaeota from a Subsurface Thermal Aquifer Revealed Pathways of Methyl-Reducing Methanogenesis and Fermentative Metabolism

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Methanogenesis is the main source of biogenic methane in the atmosphere and therefore plays an important role in climate change. While all methanogens known until recently belonged to the phylum Euryarchaeota, potential methanogens were recently found among two uncultured archaeal phyla, Bathyarchaeota and Verstraetearchaeota. Analysis of the genomes of several members of Verstraetearchaeota revealed their ability to use methylated compounds for methanogenesis; however, all these genomes were incomplete, which prevents an unequivocal reconstruction of their metabolic pathways. The present work reports the complete genome of a new member of Verstraetearchaeota from the metagenome of the microbial community of a deep subsurface reservoir of thermal waters in Western Siberia. Phylogenetic analysis revealed the new archaeon to belong to a new species of the genus ‘Candidatus Methanosuratus’, for which the name ‘Candidatus Methanosuratus subterraneum’ was proposed. The possibility of methyl-reducing methanogenesis was indicated by the presence of the methyl coenzyme M reductase complex and of the genes required for methane production using methanol as the methyl group donor, while the genes required for the oxidation of methyl group to CO2 were missing. Genome analysis showed that ‘Ca. Methanosuratus subterraneum’ has the metabolic pathways required for growth by fermentation of proteinaceous substrates. Analysis of the global distribution of ‘Ca. Methanosuratus’ revealed the 16S rRNA gene sequences assigned to this genus in hot springs, underground waters, and oil reservoirs, which makes it possible to consider this genus as a representative of the subsurface biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Alneberg, J., Bjarnason, B.S., De Bruijn, I., Schirmer, M., Quick, J., Ijaz, U.Z., Lahti, L., Loman, N.J., Andersson, A.F., and Quince, C., Binning metagenomic contigs by coverage and composition, Nat. Methods, 2014, vol. 11, pp. 1144‒1146.

    Article  CAS  PubMed  Google Scholar 

  2. Borrel, G., Adam, P.S., and Gribaldo, S., Methanogenesis and the Wood–Ljungdahl pathway: an ancient, versatile, and fragile association, Genome Biol. Evol., 2016, vol. 8, pp. 1706‒1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Braun, S., Mhatre, S.S., Jaussi, M., Røy, H., Kjeldsen, K.U., Pearce, C., Seidenkrantz, M.S., Jørgensen, B.B., and Lomstein, B.A., Microbial turnover times in the deep seabed studied by amino acid racemization modelling, Sci. Rep., 2017, vol. 7. Article 5680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao, M.D., Nguyen, S.H., Ganesamoorthy, D., Elliott, A.G., Cooper, M.A., and Coin, L.J., Scaffolding and completing genome assemblies in real-time with nanopore sequencing, Nat. Commun., 2017, vol. 8, p. 14515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chivian, D., Brodie, E.L., Alm, E.J., Culley, D.E., Dehal, P.S., DeSantis, T.Z., Gihring, T.M., Lapidus, A., Lin, L.-H., Lowry, S.R., Moser, D.P., Richardson, P.M., Southam, G., Wanger, G., Pratt, L.M., et al., Environmental genomics reveals a single-species ecosystem deep within Earth, Science, 2008, vol. 322., no. 5899, pp. 275‒278.

    Article  CAS  PubMed  Google Scholar 

  6. Evans, P.N., Parks, D.H., Chadwick, G.L., Robbins, S.J., Orphan, V.J., Golding, S.D., and Tyson, G.W., Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics, Science, 2015, vol. 350, no. 6259, pp. 434‒438.

    Article  CAS  PubMed  Google Scholar 

  7. Federhen, S., The NCBI taxonomy database, Nucl. Acids Res., 2011, vol. 40, pp. D136‒D143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol., 2010, vol. 59, pp. 307‒321.

    Article  CAS  PubMed  Google Scholar 

  9. Haveman, S.A., Pedersen, K., and Ruotsalainen, P., Distribution and metabolic diversity of microorganisms in deep igneous rock aquifers of Finland, Geomicrobiol. J., 1999, vol. 16, pp. 277‒294.

    Article  Google Scholar 

  10. Hedderich, R. and Whitman, W.B., Physiology and biochemistry of the methane-producing archaea, in The Prokaryotes, Berlin: Springer, 2013, pp. 635‒662.

    Google Scholar 

  11. Ino, K., Hernsdorf, A.W., Konno, U., Kouduka, M., Yanagawa, K., Kato, S., Sunamura, M., Hirota, A., Togo, Y.S., Ito, K., Fukuda, A., Iwatsuki, T., Mizuno, T., Komatsu, D.D., Tsunogai, U., et al., Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment, ISME J., 2017, vol. 12, pp. 31‒47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kadnikov, V.V., Frank, Y.A., Mardanov, A.V., Beletsky, A.V., Ivasenko, D.A., Pimenov, N.V., Karnachuk, O.V., and Ravin, N.V., Uncultured bacteria and methanogenic archaea predominate in the microbial community of Western Siberian deep subsurface aquifer, Microbiology (Moscow), 2017a, vol. 86, pp. 412‒415.

    Article  CAS  Google Scholar 

  13. Kadnikov, V.V., Frank, Y.A., Mardanov, A.V., Beletsky, A.V., Ivasenko, D.A., Pimenov, N.V., Karnachuk, O.V., and Ravin, N.V., Variability of the composition of the microbial community of the deep subsurface thermal aquifer in Western Siberia, Microbiology (Moscow), 2017b, vol. 86, pp. 765‒772.

    Article  CAS  Google Scholar 

  14. Kadnikov, V.V., Frank, Y.A., Mardanov, A.V., Beletsky, A.V., Karnachuk, O.V., and Ravin, N.V. Metagenome of the Siberian underground water reservoir, Genome Announc., 2017c, vol. 5, no. 47, p. e01317-17.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Konstantinidis, K.T., Rosselló-Móra, R., and Amann, R., Uncultivated microbes in need of their own taxonomy, ISME J., 2017, vol. 11, pp. 2399‒2406.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kotelnikova, S., Microbial production and oxidation of methane in deep subsurface, Earth-Sci. Rev., 2002, vol. 58, pp. 367‒395.

    Article  CAS  Google Scholar 

  17. Kumar, S., Stecher, G., and Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870‒1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lang, K., Schuldes, J., Klingl, A., Poehlein, A., Daniel, R., and Brunea, A., New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum,” Appl. Environ. Microbiol., 2015, vol. 81, pp. 1338‒1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Langmead, B. and Salzberg, S.L., Fast gapped-read alignment with Bowtie 2, Nat. Methods, 2012, vol. 9, pp. 357‒359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lau, M.C., Kieft, T.L., Kuloyo, O., Linage-Alvarez, B., van Heerden, E., Lindsay, M.R., Magnabosco, C., Wang, W., Wiggins, J.B., Guo, L., Perlman, D.H., Kyin, S., Shwe, H.H., Harris, R.L., Oh, Y. et al., An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, pp. E7927‒E7936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lever, M.A., Acetogenesis in the energy-starved deep biosphere–a paradox?, Front. Microbiol., 2012, vol. 2, p. 284.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li, H. and Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, 2009, vol. 25, pp. 1754‒1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lomstein, B.A., Langerhuus, A.T., D’Hondt, S., Jørgensen, B.B., and Spivack, A.J., Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment, Nature, 2012, vol. 484, no. 7392, pp. 101‒104.

    Article  CAS  PubMed  Google Scholar 

  24. Magnabosco, C., Lin, L.H., Dong, H., Bomberg, M., Ghiorse, W., Stan-Lotter, H., Pedersen, K., Kieft, T.L., van Heerden, E., and Onstott, T.C., The biomass and biodiversity of the continental subsurface, Nat. Geosci., 2018, vol. 1, pp. 707‒717.

    Article  CAS  Google Scholar 

  25. Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.-P., and Göker, M., Genome sequence-based species delimitation with confidence intervals and improved distance functions, BMC Bioinformatics, 2013, vol. 14, p. 60.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nyyssönen, M., Hultman, J., Ahonen, L., Kukkonen, I., Paulin, L., Laine, P., Itävaara, M., and Auvinen, P., Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield, ISME J., 2014, vol. 8, pp. 126‒138.

    Article  CAS  PubMed  Google Scholar 

  27. Ollivier, B., Cayol, J.-L., and Fauque, G., Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents, in Sulphate-Reducing Bacteria, Environmental and Engineered Systems, Barton, L.L. and Hamilton, W.A., Eds., Cambridge: Cambridge Univ. Press, 2007, pp. 305–328.

    Google Scholar 

  28. Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.A., and Hugenholtz, P., A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life, Nat. Biotechnol., 2018, vol. 36, pp. 996‒1004.

    Article  CAS  PubMed  Google Scholar 

  29. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W., CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res., 2015, vol. 25, pp. 1043‒1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucl. Acids Res., 2013, vol. 41, pp. D590‒D596.

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez-R, L.M. and Konstantinidis, K.T., The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes, Peer J., 2016, vol. 4. e1900v1.

  32. Schloss, P.D., Girard, R.A., Martin, T., Edwards, J., and Thrash, J.C., Status of the archaeal and bacterial census: an update, MBio, 2016, vol. 7, pp. e00201–e00216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Talavera, G. and Castresana, J., Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments, Syst. Biol., 2007, vol. 56, pp. 564‒577.

    Article  CAS  PubMed  Google Scholar 

  34. Vanwonterghem, I., Evans, P.N., Parks, D.H., Jensen, P.D., Woodcroft, B.J., Hugenholtz, P., and Tyson, G.W., Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota, Nat. Microbiol., 2016, vol. 1, p. 16170.

    Article  CAS  PubMed  Google Scholar 

  35. Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., and Earl, A.M., Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement, PLoS One, 2014, vol. 9, p. e112963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to D.Yu. Sorokin for his help in analysis of the metabolic pathways.

The work was carried out using the equipment of the Core Research Facility ‘Bioengineering’.

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 16-34-60124 and by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kadnikov.

Ethics declarations

Сonflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadnikov, V.V., Mardanov, A.V., Beletsky, A.V. et al. Genome of a Member of the Candidate Archaeal Phylum Verstraetearchaeota from a Subsurface Thermal Aquifer Revealed Pathways of Methyl-Reducing Methanogenesis and Fermentative Metabolism. Microbiology 88, 316–323 (2019). https://doi.org/10.1134/S0026261719030068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719030068

Keywords:

Navigation