Advertisement

Microbiology

, Volume 88, Issue 3, pp 292–299 | Cite as

Selection of a Microbial Community in the Course of Formation of Acid Mine Drainage

  • V. V. Kadnikov
  • E. V. Gruzdev
  • D. A. Ivasenko
  • A. V. Beletsky
  • A. V. Mardanov
  • E. V. Danilova
  • O. V. Karnachuk
  • N. V. RavinEmail author
EXPERIMENTAL ARTICLES

Abstract

Changes in microbial community composition during formation of an acid mine drainage were studied on a model of two water reservoirs located in the Ozernoye open-cast mine for polymetallic ores in Eastern Siberia. The first reservoir, Bu-18, was filled with groundwater, had a neutral pH and low levels of sulfate and dissolved metal ions. The second reservoir, Bu-16, was an acid mine drainage (pH 2.85) filled with the water from Bu-18, which passed through rocks containing sulfide minerals. The Bu-16 water contained 1405 mg/L of sulfate, 164 mg/L of manganese, 78 mg/L of magnesium, and 26 mg/L of iron. Molecular analysis of the microbial communities of two reservoirs, carried out using high-throughput sequencing of the 16S rRNA gene fragments, showed that formation of the acid mine drainage was accompanied by a decrease in microbial diversity and by selection of several dominant taxonomic and functional groups. Chemolithoautotrophic iron- and sulfur-oxidizing bacteria of the genera Leptospirillum, Acidithiobacillus, Gallionella, Sulfuriferula, and Sulfobacillus constituted most of the prokaryotic community in Bu-16. Heterotrophic bacteria of the genera Ferrimicrobium and Metallibacterium, capable of reducing Fe(III) under anaerobic conditions, were present as minor components. Over 20% of the community were members of the Candidate Phyla Radiation group and of the candidate phylum Dependentiae (TM6), known for their parasitic or symbiotic lifestyle. These groups of bacteria were rarely found in acid mine drainage and only in minor quantities. Potential hosts of the Dependentiae, flagellates of the genus Spumella, were found among eukaryotes in Bu-16.

Keywords:

acid mine drainage microbial community natural selection Candidate Phyla Radiation Dependentiae 

Notes

ACKNOWLEDGMENTS

The work was performed using the scientific equipment of the Core Research Facility “Bioengineering.”

FUNDING

The work was supported by the Russian Science Foundation (project no. 14-14-01016, analysis of prokaryotes) and by the Russian Foundation for Basic Research (project no. 18-34-00356, analysis of eukaryotes). Sampling and physicochemical analysis of acid mine drainage samples were supported by the Russian Foundation for Basic Research, project no. 16-54-150011.

COMPLIANCE WITH ETHICAL STANDARDS

Statement of the welfare of animals. This article does not contain any research using animals as objects.

Conflict of interest. The authors declare that there is no conflict of interest.

REFERENCES

  1. 1.
    Anderson, I., Chertkov, O., Chen, A., Saunders, E., Lapidus, A., Nolan, M., Lucas, S., Hammon, N., Deshpande, S., Cheng, J.F., Han, C., Tapia, R., Goodwin, L.A., Pitluck, S., Liolios, K., et al., Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NAL(T)), Stand. Genomic Sci. 2012, vol. 6 , no. 3, pp. 1‒13.  https://doi.org/10.4056/sigs.2736042 Google Scholar
  2. 2.
    Baker, B.J. and Banfield, J.F., Microbial communities in acid mine drainage, FEMS Microbiol. Ecol., 2003, vol. 44, pp. 139–152.CrossRefGoogle Scholar
  3. 3.
    Behnke, A., Engel, M., Christen, R., Nebel, M., Klein, R.R., and Stoeck, T., Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions, Environ. Microbiol., 2011, vol. 13, pp. 340–349.CrossRefGoogle Scholar
  4. 4.
    Boenigk, J., Pfandl, K., Stadler, P., and Chatzinotas, A., High diversity of the “Spumella-like” flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions, Environ. Microbiol., 2005, vol. 7, pp. 685‒697.CrossRefGoogle Scholar
  5. 5.
    Brown, C.T., Hug, L.A., Thomas, B.C., Sharon, I., Castelle, C.J., Singh, A., Wilkins, M.J., Wrighton, K.C., Williams, K.H., and Banfield, J.F., Unusual biology across a group comprising more than 15% of domain Bacteria, Nature, 2015, vol. 523, pp. 208‒211.CrossRefGoogle Scholar
  6. 6.
    Bruneel, O., Duran, R., Casiot, C., Elbaz-Poulichet, F., and Personne, J.C., Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoules, France, Appl. Environ. Microbiol., 2006, vol. 72, pp. 551–556.CrossRefGoogle Scholar
  7. 7.
    Castelle, C.J., Brown, C.T., Anantharaman, K., Probst, A.J., Huang, R.H., and Banfield, J.F., Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations, Nat. Rev. Microbiol., 2018, vol. 16, pp. 629‒645.CrossRefGoogle Scholar
  8. 8.
    Chen, L.X., Hu, M., Huang, L.N., Hua, Z.S., Kuang, J.L., Li, S.J., and Shu, W.S., Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage, ISME J., 2015, vol. 9, pp. 1579‒1592.CrossRefGoogle Scholar
  9. 9.
    Edgar, R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 2010, vol. 26, pp. 2460–2461.CrossRefGoogle Scholar
  10. 10.
    Fabisch, M., Beulig, F., Akob, D.M., and Kusel, K., Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations, Front. Microbiol., 2013, vol. 4, p. 390.CrossRefGoogle Scholar
  11. 11.
    García-Moyano, A., Austnes, A.E., Lanzén, A., González-Toril, E., Aguilera, Á., and Øvreås, L., Novel and unexpected microbial diversity in acid mine drainage in Svalbard (78° N), revealed by culture-independent approaches, Microorganisms, 2015, vol. 3, pp. 667‒694.CrossRefGoogle Scholar
  12. 12.
    Hallberg, K.B., González-Toril, E., and Johnson, D.B., Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments, Extremophiles, 2010, vol. 14, pp. 9‒19.CrossRefGoogle Scholar
  13. 13.
    He, Z., Xiao, S., Xie, X., Zhong, H., Hu, Y., Li, Q., Gao, F., Li, G., Liu, J., and Qiu, G., Molecular diversity of microbial community in acid mine drainages of Yunfu sulfide mine, Extremophiles, 2007, vol. 11, pp. 305–314.CrossRefGoogle Scholar
  14. 14.
    Ishii, K., Fujitani, H., Soh, K., Nakagawa, T., Takahashi, R., and Tsuneda, S., Enrichment and physiological characterization of a cold-adapted nitrite-oxidizing Nitrotoga sp. from an eelgrass sediment, Appl. Environ. Microbiol., 2017, vol. 83. pii: e00549-17.CrossRefGoogle Scholar
  15. 15.
    Johnson, B.D. and Hallberg, K.B. The microbiology of acidic mine waters, Res. Microbiol., 2003, vol. 154, pp. 466‒473.CrossRefGoogle Scholar
  16. 16.
    Johnson, D.B., Bacelar-Nicolau, P., Okibe, N., Thomas, A., and Hallberg, K.B., Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1082‒1089.CrossRefGoogle Scholar
  17. 17.
    Kadnikov, V.V., Ivasenko, D.A., Beletsky, A.V., Mardanov, A.V., Danilova, E.V., Pimenov, N.V., Karnachuk, O.V., and Ravin, N.V., Effect of metal concentration on the microbial community in acid mine drainage of a polysulfide ore deposit, Microbiology (Moscow), 2016a, vol. 85, pp. 745–751.  https://doi.org/10.1134/S0026261716060126 CrossRefGoogle Scholar
  18. 18.
    Kadnikov, V.V., Ivasenko, D.A., Beletsky, A.V., Mardanov, A.V., Danilova, E.V., Pimenov, N.V., Karnachuk, O.V., and Ravin, N.V., A novel uncultured bacterium of the family Gallionellaceae: description and genome reconstruction based on metagenomic analysis of microbial community in acid mine drainage, Microbiology (Moscow), 2016b, vol. 85, no. 4, pp. 449–461.  https://doi.org/10.1134/S002626171604010X CrossRefGoogle Scholar
  19. 19.
    Kimura, S., Bryan, C.G., Hallberg, K.B., and Johnson, D.B., Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy, Environ. Microbiol., 2011, vol. 13, pp. 2092–2104.CrossRefGoogle Scholar
  20. 20.
    Kupka, D., Rzhepishevska, O.I., Dopson, M., Lindström, E.B., Karnachuk, O.V., and Tuovinen, O.H., Bacterial oxidation of ferrous sulfate at low temperatures, Biotechnol. Bioeng., 2007, vol. 97, pp. 1470‒1478.CrossRefGoogle Scholar
  21. 21.
    Liljeqvist, M., Valdes, J., Holmes, D.S., and Dopson, M., Draft genome of the psychrotolerant acidophile Acidithiobacillus ferrivorans SS3, J. Bacteriol., 2011, vol. 193, pp. 4304–4305.CrossRefGoogle Scholar
  22. 22.
    Magoč, T. and Salzberg, S.L., FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, 2011, vol. 27, pp. 2957‒2963.CrossRefGoogle Scholar
  23. 23.
    Méndez-García, C., Peláez, A.I., Mesa, V., Sánchez, J., Golyshina, O.V., and Ferrer, M., Microbial diversity and metabolic networks in acid mine drainage habitats, Front. Microbiol., 2015, vol. 29, no. 6, p. 475.Google Scholar
  24. 24.
    Pruesse, E., Peplies, J., and Glöckner, F.O., SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes, Bioinformatics, 2012, vol. 28, pp. 1823–1829.CrossRefGoogle Scholar
  25. 25.
    Ram, R.J., Verberkmoes, N.C., Thelen, M.P., Tyson, G.W., Baker, B.J., Blake, R.C. 2nd, Shah, M., Hettich, R.L., and Banfield, J.F., Community proteomics of a natural microbial biofilm, Science, 2005, vol. 308, pp. 1915‒1920.CrossRefGoogle Scholar
  26. 26.
    Rohwerder, T., Gehrke, T., Kinzler, K., and Sand, W., Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation, Appl. Microbiol. Biotechnol., 2003, vol. 63, pp. 239‒248.CrossRefGoogle Scholar
  27. 27.
    Schramm, A., De Beer, D., Wagner, M., and Amann, R., Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor, Appl. Environ. Microbiol., 1998, vol. 64, pp. 3480‒3485.Google Scholar
  28. 28.
    Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., and Weber, C.F., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 2009, vol. 75, pp. 7537–7541.CrossRefGoogle Scholar
  29. 29.
    Tyson, G.W., Chapman, J., Hugenholtz, P., Allen, E.E., Ram, R.J., Richardson, P.M., Solovyev, V.V., Rubin, E.M., Rokhsar, D.S., and Banfield, J.F., Community structure and metabolism through reconstruction of microbial genomes from the environment, Nature, 2004, vol. 428, no.  6978, pp. 37–43.CrossRefGoogle Scholar
  30. 30.
    Watanabe, T., Kojima, H., and Fukui, M., Sulfuriferula multivorans gen. nov., sp. nov., isolated from a freshwater lake, reclassification of “Thiobacillus plumbophilus” as Sulfuriferula plumbophilus sp. nov., and description of Sulfuricellaceae fam. nov. and Sulfuricellales ord. nov., Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 1504‒1508.CrossRefGoogle Scholar
  31. 31.
    Yeoh, Y.K., Sekiguchi, Y., Parks, D.H., and Hugenholtz, P., Comparative genomics of candidate phylum TM6 suggests that parasitism is widespread and ancestral in this lineage, Mol. Biol. Evol., 2016, vol. 33, pp. 915‒927.CrossRefGoogle Scholar
  32. 32.
    Ziegler, S., Waidner, B., Itoh, T., Schumann, P., Spring, S., and Gescher, J., Metallibacterium scheffleri gen. nov., sp. nov., an alkalinizing gammaproteobacterium isolated from an acidic biofilm, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, pp. 1499‒1504.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Kadnikov
    • 1
  • E. V. Gruzdev
    • 1
  • D. A. Ivasenko
    • 2
  • A. V. Beletsky
    • 1
  • A. V. Mardanov
    • 1
  • E. V. Danilova
    • 3
  • O. V. Karnachuk
    • 2
  • N. V. Ravin
    • 1
    Email author
  1. 1.Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of SciencesMoscowRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.Institute of General and Experimental Biology, Siberian Branch, Russian Academy of SciencesUlan-UdeRussia

Personalised recommendations