Skip to main content
Log in

Characterization of Ultrasmall Chryseobacterium Strains FM1 and FM2 Isolated from Xenopus laevis Skin

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Two strains of ultrasmall gram-negative bacteria (USGNB), FM1 and FM2, were isolated from the skin of the smooth clawed frog Xenopus laevis. The cytological, physiological, biochemical, and genotypic characteristics of the isolates were studied. Based on the sequencing of their 16S rRNA genes and on their phenotypic properties, the isolates were assigned to the genus Chryseobacterium. The cells were extremely small, with cell volumes of ~0.06 and ~0.015 µm3 for developing cultures of strains FM1 and FM2, respectively. Since the USGNB cells were firmly attached to the skin surface and could not be removed by repeated washing with water, these bacteria may be classified as epibionts. Adhesive properties of the fimbria-like appendages revealed in strains FM1 and FM2 by electron microscopy could probably contribute to tight binding of USGNB cells to the skin. Localization of ultrasmall gram-negative bacteria on skin surface of the frogs may indicate their action as a protective bacterial filter; skin surface of Xenopus laevis is thus characterized for the first time as a specific habitat of ultrasmall Chryseobacterium strains. Isolation and characterization of two ultrasmall Chryseobacterium strains, FM1 and FM2, improves our understanding of diversity of the cellular structural and functional characteristics and of the ecological niches of this bacterial genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Antwis, R.E., Haworth, R.L., Engelmoer, D.J.-P., Ogilvy, V., Fidgett, A.L., and Preziosi, R.F., Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas), PLoS One, 2014, vol. 9. e85563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Becker, M.H. and Harris, R.N., Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease, PLoS One, 2010, vol. 5. e10957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belden, L.K. and Harris, R.N., Infectious diseases in wildlife: the community ecology context, Front. Ecol. Environ., 2007, vol. 5, pp. 533–539.

    Article  Google Scholar 

  4. Bell, S.C., Alford, R.A., Garland, S., Padilla, G., and Thomas, A.D., Screening bacterial metabolites for inhibitory effects against Batrachochytrium dendrobatidis using a spectrophotometric assay, Dis. Aquat. Organ., 2013, vol. 103, pp. 77–85.

    Article  PubMed  Google Scholar 

  5. Bernardet, J.-F., Nakagawa, Y., and Holmes, B., Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1049–1070.

    CAS  PubMed  Google Scholar 

  6. Bevins, C.L. and Zasloff, M., Peptides from frog skin, Annu. Rev. Biochem., 1990, vol. 59, pp. 395–414.

    Article  CAS  PubMed  Google Scholar 

  7. Boronina, L.G., Kukushkina, M.P., Krutova, K.V., and Blinova, S.M., Chryseobacterium (Flavobacterium) spp.: clinical significance, identification, antimicrobial susceptibility, Clin. Microbiol. Antimicrob. Chemother., 2003, vol. 5, pp. 243–250.

    Google Scholar 

  8. Brucker, R.M., Harris, R.N., Schwantes, C.R., Gallaher, T.N., Flaherty, D.C., Lam, B.A., and Minbiole, K.P., Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus, J. Chem. Ecol., 2008, vol. 34, pp. 1422–1429.

    Article  CAS  PubMed  Google Scholar 

  9. Bulet, P., Stöcklin, R., and Menin, L., Anti-microbial peptides: from invertebrates to vertebrates, Immunol. Rev., 2004, vol. 198, pp. 169–184.

    Article  CAS  PubMed  Google Scholar 

  10. Cavicchioli, R. and Ostrowski, M., Ultramicrobacteria, in Encyclopedia of Life Sciences, Chichester: Wiley, 2003. https://doi.org/10.1038/npg.els.0000309

    Google Scholar 

  11. Clay, K., Defensive symbiosis: a microbial perspective, Funct. Ecol., 2014, vol. 28, pp. 293–298.

    Article  Google Scholar 

  12. Conlon, J.M., Structural diversity and species distribution of host-defense peptides in frog skin secretions, Cell. Mol. Life Sci., 2011, vol. 68, pp. 2303–2315.

    Article  CAS  PubMed  Google Scholar 

  13. Conlon, J.M., Mechkarska, M., and King, J.D., Host-defense peptides in skin secretions of African clawed frogs (Xenopodinae, Pipidae), Gen. Comp. Endocrinol., 2012, vol. 176, pp. 513–518.

    Article  CAS  PubMed  Google Scholar 

  14. Duda, V.I., Ultramicrobacteria, in Encyclopedia of Life Sciences, Chichester: Wiley, 2011, pp. 1–23. https://doi.org/10.1002/9780470015902.a0000309.pub2

    Google Scholar 

  15. Euzéby, J.P., List of prokaryotic names with standing in nomenclature–genus Chryseobacterium, 2009, рр. 1–19. www.bacterio.net.

  16. Hector, J.S. and Johnson, A.R., Determination of genome size of Pseudomonas aeruginosa by PFGE: analysis of restriction fragments, Nucleic Acids Res., 1990, vol. 18, pp. 3171–3174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kämpfer, P., Lodders, N., Vaneechoutte, M., and Wauters, G., Transfer of Sejongia antarctica, Sejongia jeonii, and Sejongia marina to the genus Chryseobacterium as Chryseobacterium antarcticum comb. nov., Chryseobacterium jeonii comb. nov. and Chryseobacterium marinum comb. nov., Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 2238–2240.

    Article  CAS  PubMed  Google Scholar 

  18. King, J.D., Mechkarska, M., Coquet, L., Leprince, J., Jouenne, T., Vaudry, H., Takada, K., and Conlon, J.M., Host-defense peptides from skin secretions of the tetraploid frogs Xenopus petersii and Xenopus pygmaeus, and the octoploid frog Xenopus lenduensis (Pipidae), Peptides, 2012, vol. 33, pp. 35–43.

    Article  CAS  PubMed  Google Scholar 

  19. Marmur, J., A procedure for the isolation of deoxiribonucleic acid from microorganisms, J. Mol. Biol., 1961, vol. 3, pp. 208–218. http://dx.doi.org/https://doi.org/10.1016/S0022-2836(61)80047-8.

    Article  CAS  Google Scholar 

  20. Reynolds, E.S., The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell. Biol., 1963, vol. 17, pp. 208–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaw, S.D., Berger, L., Bell, S., Dodd, S., James, T.Y., Skerratt, L.F., Bishop, P.J., and Speare, R., Baseline cutaneous bacteria of free-living New Zealand native frogs (Leiopelma archeyi and Leiopelma hochstetteri) and implications for their role in defense against the amphibian chytrid (Batrachochytrium dendrobatidis), J. Wildl. Dis., 2014, vol. 50, pp. 723–732.

    Article  PubMed  Google Scholar 

  22. Suzina, N.E., Duda, V.I., Esikova, T.Z., Shorokhova, A.P., Gafarov, A.B., Oleinikov, R.R., Abashina, T.N., Akimov, V.N., Polivtseva, V.N., and Boronin, A.M., Novel ultramicrobacteria, strains NF4 and NF5, of the genus Chryseobacterium: facultative epibionts of Bacillus subtilis, Microbiology (Moscow), 2011, vol. 80, pp. 535–548.

    Article  CAS  Google Scholar 

  23. Suzina, N.E., Esikova, T.Z., Oleinikov, R.R., Gafarov, A.B., Shorokhova, A.P., Polivtseva, V.N., Ross, D.V., Abashina, T.N., Duda, V.I., and Boronin, A.M., Comparative characteristics of free-living ultramicroscopical bacteria obtained from natural biotopes, Appl. Biochem. Microbiol., 2015, vol. 51, pp. 159–168.

    Article  CAS  Google Scholar 

  24. Vandamme, P., Bernardet, J.-F., Segers, P., Kersters, K., and Holmes, B., New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev., Int. J. Syst. Bacteriol., 1994, vol. 44, pp. 827–831.

    Article  Google Scholar 

  25. Zairi, A., Tangy, F., Bouassida, K., and Hani, K., Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides ‒ a mini review, J. Biomed. Biotechnol., 2009, vol. 2009, article ID. 452567.

  26. Zasloff, M., Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor, Proc. Natl. Acad. Sci. U. S. A., 1987, vol. 84, pp. 5449–5453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Electron microscopy was carried out at the UNIQEM Collection Common Use Center.

The work was supported by the Presidium of the Russian Academy of Sciences Program of Basic Research no. 32 (Nanostructures: Physica, Chemistry, Biology, Basic Technologies), subprogram 3 (Nanobiotechnologies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Duda.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, D.V., Suzina, N.E., Gafarov, A.B. et al. Characterization of Ultrasmall Chryseobacterium Strains FM1 and FM2 Isolated from Xenopus laevis Skin. Microbiology 88, 172–182 (2019). https://doi.org/10.1134/S0026261719020103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719020103

Keywords:

Navigation