Skip to main content
Log in

Ability of the Dietzia, Gordonia and Rhodococcus Actinobacteria to Accumulate Nickel Ions

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Accumulation of nickel ions by actinobacterial strains of Dietzia, Gordonia, and Rhodococcus from the Regional Specialized Collection of Alkanotrophic Microorganisms (IEGM; http://www.iegm.ru/iegmcol) was studied. The major physicochemical factors underlying the accumulation of nickel ions are discussed. The strains characterized by high (up to 95%) accumulation of and resistance to increased (up to 10.0 mM) nickel ion concentrations were selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bell, J.M.L., Philp, J.C., Kuyukina, M.S., Ivshina, I.B., Dunbar, S.A., Cunningham, C.J., and Anderson, P., Methods evaluating vanadium tolerance in bacteria isolated from crude oil contaminated land, J. Microbiol. Methods, 2004, vol. 58, pp. 87‒100.

    Article  CAS  PubMed  Google Scholar 

  2. Beolchini, F., Dell’Anno, A., De Propris, L., Ubaldini, S., Cerrone, F., and Danovaro, R., Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals, Chemosphere, 2009, vol. 74, pp. 1321‒1326.

    Article  CAS  PubMed  Google Scholar 

  3. Choudhary, S. and Sar, P., Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration, Biores. Technol., 2009, vol. 100, pp. 2482‒2492.

    Article  CAS  Google Scholar 

  4. Dabbs, E.R. and Sole, G.J., Plasmid-borne resistance to arsenate, arsenite, cadmium, and chloramphenicol in a Rhodococcus species, Mol. Gen. Genom., 1988, vol. 211, pp. 148‒154.

    Article  CAS  Google Scholar 

  5. Fulkerson, J.F. and Mobley, L.T., Membrane topology of the NixA nickel transporter of Helicobacter pylori: two nickel transport-specific motifs within transmembrane helices II and III, J. Bacteriol., 2000, vol. 182, pp. 1722‒1730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gadd, G.M., Metal tolerance, in Microbiology of Extreme Environments, Edwards, C., Ed., Open Univ. Press, 1990, pp. 178‒210.

  7. Gorina, I.A. and Yakovleva, V.I., A rapid method for determination of protein content in microbial cells, Prikl. Biokhim. Mikrobiol., 1980, vol. 16., no. 6, pp. 936‒937.

    CAS  PubMed  Google Scholar 

  8. Hausinger, R.P. and Zamble, D.B., Microbial physiology of nikel and cobalt, in Molecular Microbiology of Heavy Metals, Nies, D.H. and Silver, S., Eds., Berlin: Springer, 2007, pp. 287–320.

    Google Scholar 

  9. Hebbeln, P. and Eitinger, T., Heterologous production and characterization of bacterial nikel/cobalt permeases, FEMS Microbiol. Lett., 2004, vol. 230, pp. 129‒135.

    Article  CAS  PubMed  Google Scholar 

  10. Ivshina, I.B., Peshkur, T.A., and Korobov, V.P., Efficient uptake of cesium ions by Rhodococcus cells, Microbiology (Moscow), 2002, vol. 71, pp. 357‒361.

    Article  CAS  Google Scholar 

  11. Ivshina, I.B., Kuyukina, M.S., and Kostina, L.V., Adaptive mechanisms of nonspecific resistance to heavy metal ions in alkanotrophic actinobacteria, Rus. J. Ecol., 2013, no. 2, pp. 123‒130.

  12. Kostina, L.V., Kuyukina, M.S., and Ivshina, I.B., Biosorbtsiya, akkumulyatsiya i sposoby izvlecheniya tyazhelykh metallov (Heavy Metals: Biosorption, Bioaccumulation, and Recovery Techniques), LAP Lambert Academic, 2010.

  13. Kostina, L.V., Kuyukina, M.S., and Ivshina, I.B., Recovery of heavy metal ions by the cells of Rhodococcus ruber IEGM 231, Vestn. Perm. Gos. Univ., Ser. Biol., 2013, no. 2, pp. 42‒48.

  14. Lur’e, A., Analiticheskaya khimiya promyshlennykh vod (Analytical Chemistry of Industrial Waters), Moscow: Khimiya, 1984.

  15. Mergeay, M., Monchy, S., Vallaeys, T., Auquier, V., Benotmane, A., Bertin, P., Taghavi, S., Dunn, J., van der Lelie, D., and Wattiez, R., Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes, FEMS Microbiol. Rev., 2003, vol. 27, pp. 385‒410.

    Article  CAS  PubMed  Google Scholar 

  16. Mirimanoff, N. and Wilkinson, K.J., Regulation of Zn accumulation by a freshwater gram-positive bacterium (Rhodococcus opacus), Environ. Sci. Technol., 2000, vol. 34, pp. 616‒622.

    Article  CAS  Google Scholar 

  17. Nies, D.H., Bacterial transition metal homeostasis, in Molecular Microbiology of Heavy Metals, Nies, D.H. and Silver, S., Eds., Berlin: Springer, 2007, pp. 117‒142.

    Book  Google Scholar 

  18. Permina, E.A., Kazakov, A.E., Kalinina, O.V., and Gelfand, M.S., Comparative genomics of regulation of heavy metal resistance in Eubacteria, BMC Microbiol., 2006, vol. 6, pp. 49‒60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peshkur, T.A. and Ivshina, I.B., Specific accumulation of cesium by Rhodococcus ruber cells grown on n-hexadecane, Rus. J. Ecol., 2003, pp. 65‒67.

  20. Silver, S. and Phung, L.T., Bacterial heavy metal resistance: new surprises, Annu. Rev. Microbiol., 1996, vol. 50, pp. 753‒789.

    Article  CAS  PubMed  Google Scholar 

  21. Siunova, T.V., Kochetkov, V.V., Validov, Sh.Z., Suzina, N.E., and Boronin, A.M., The production of phenazine antibiotics by the Pseudomonas aureofaciens strain with plasmid-controlled resistance to cobalt and nickel, Microbiology (Moscow), 2002, vol. 71, pp. 670‒676.

    Article  CAS  Google Scholar 

  22. Wang, J. and Chen, C., Biosorbents for heavy metals removal and their future, Biotechnol. Adv., 2009, vol. 27, pp. 195‒226.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out within the framework of the Complex Program 18-4-8-21 and the State Assignment (project no. 01201353247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Litvinenko.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Dedyukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinenko, L.V. Ability of the Dietzia, Gordonia and Rhodococcus Actinobacteria to Accumulate Nickel Ions. Microbiology 88, 191–199 (2019). https://doi.org/10.1134/S0026261719020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719020061

Keywords:

Navigation